亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The vast majority of reduced-order models (ROMs) first obtain a low dimensional representation of the problem from high-dimensional model (HDM) training data which is afterwards used to obtain a system of reduced complexity. Unfortunately, convection-dominated problems generally have a slowly decaying Kolmogorov n-width, which makes obtaining an accurate ROM built solely from training data very challenging. The accuracy of a ROM can be improved through enrichment with HDM solutions; however, due to the large computational expense of HDM evaluations for complex problems, they can only be used parsimoniously to obtain relevant computational savings. In this work, we exploit the local spatial and temporal coherence often exhibited by these problems to derive an accurate, cost-efficient approach that repeatedly combines HDM and ROM evaluations without a separate training phase. Our approach obtains solutions at a given time step by either fully solving the HDM or by combining partial HDM and ROM solves. A dynamic sampling procedure identifies regions that require the HDM solution for global accuracy and the reminder of the flow is reconstructed using the ROM. Moreover, solutions combining both HDM and ROM solves use spatial filtering to eliminate potential spurious oscillations that may develop. We test the proposed method on inviscid compressible flow problems and demonstrate speedups up to an order of magnitude.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 損失 · Networking · 泛函 · Neural Networks ·
2023 年 10 月 29 日

For multi-scale problems, the conventional physics-informed neural networks (PINNs) face some challenges in obtaining available predictions. In this paper, based on PINNs, we propose a practical deep learning framework for multi-scale problems by reconstructing the loss function and associating it with special neural network architectures. New PINN methods derived from the improved PINN framework differ from the conventional PINN method mainly in two aspects. First, the new methods use a novel loss function by modifying the standard loss function through a (grouping) regularization strategy. The regularization strategy implements a different power operation on each loss term so that all loss terms composing the loss function are of approximately the same order of magnitude, which makes all loss terms be optimized synchronously during the optimization process. Second, for the multi-frequency or high-frequency problems, in addition to using the modified loss function, new methods upgrade the neural network architecture from the common fully-connected neural network to special network architectures such as the Fourier feature architecture, and the integrated architecture developed by us. The combination of the above two techniques leads to a significant improvement in the computational accuracy of multi-scale problems. Several challenging numerical examples demonstrate the effectiveness of the proposed methods. The proposed methods not only significantly outperform the conventional PINN method in terms of computational efficiency and computational accuracy, but also compare favorably with the state-of-the-art methods in the recent literature. The improved PINN framework facilitates better application of PINNs to multi-scale problems.

Stress prediction in porous materials and structures is challenging due to the high computational cost associated with direct numerical simulations. Convolutional Neural Network (CNN) based architectures have recently been proposed as surrogates to approximate and extrapolate the solution of such multiscale simulations. These methodologies are usually limited to 2D problems due to the high computational cost of 3D voxel based CNNs. We propose a novel geometric learning approach based on a Graph Neural Network (GNN) that efficiently deals with three-dimensional problems by performing convolutions over 2D surfaces only. Following our previous developments using pixel-based CNN, we train the GNN to automatically add local fine-scale stress corrections to an inexpensively computed coarse stress prediction in the porous structure of interest. Our method is Bayesian and generates densities of stress fields, from which credible intervals may be extracted. As a second scientific contribution, we propose to improve the extrapolation ability of our network by deploying a strategy of online physics-based corrections. Specifically, we condition the posterior predictions of our probabilistic predictions to satisfy partial equilibrium at the microscale, at the inference stage. This is done using an Ensemble Kalman algorithm, to ensure tractability of the Bayesian conditioning operation. We show that this innovative methodology allows us to alleviate the effect of undesirable biases observed in the outputs of the uncorrected GNN, and improves the accuracy of the predictions in general.

Retrieving answers in a quick and low cost manner without hallucinations from a combination of structured and unstructured data using Language models is a major hurdle. This is what prevents employment of Language models in knowledge retrieval automation. This becomes accentuated when one wants to integrate a speech interface on top of a text based knowledge retrieval system. Besides, for commercial search and chat-bot applications, complete reliance on commercial large language models (LLMs) like GPT 3.5 etc. can be very costly. In the present study, the authors have addressed the aforementioned problem by first developing a keyword based search framework which augments discovery of the context from the document to be provided to the LLM. The keywords in turn are generated by a relatively smaller LLM and cached for comparison with keywords generated by the same smaller LLM against the query raised. This significantly reduces time and cost to find the context within documents. Once the context is set, a larger LLM uses that to provide answers based on a prompt tailored for Q\&A. This research work demonstrates that use of keywords in context identification reduces the overall inference time and cost of information retrieval. Given this reduction in inference time and cost with the keyword augmented retrieval framework, a speech based interface for user input and response readout was integrated. This allowed a seamless interaction with the language model.

Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions - the conditional denoising estimator - can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference.

Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. {While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function.} The results hold for arbitrary exchangeable scores, including {\it adaptive} ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.

We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.

Ensemble forecasts and their combination are explored from the perspective of a probability space. Manipulating ensemble forecasts as discrete probability distributions, multi-model ensembles (MMEs) are reformulated as barycenters of these distributions. Barycenters are defined with respect to a given distance. The barycenter with respect to the L2-distance is shown to be equivalent to the pooling method. Then, the barycenter-based approach is extended to a different distance with interesting properties in the distribution space: the Wasserstein distance. Another interesting feature of the barycenter approach is the possibility to give different weights to the ensembles and so to naturally build weighted MME. As a proof of concept, the L2- and the Wasserstein-barycenters are applied to combine two models from the S2S database, namely the European Centre Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) models. The performance of the two (weighted-) MMEs are evaluated for the prediction of weekly 2m-temperature over Europe for seven winters. The weights given to the models in the barycenters are optimized with respect to two metrics, the CRPS and the proportion of skilful forecasts. These weights have an important impact on the skill of the two barycenter-based MMEs. Although the ECMWF model has an overall better performance than NCEP, the barycenter-ensembles are generally able to outperform both. However, the best MME method, but also the weights, are dependent on the metric. These results constitute a promising first implementation of this methodology before moving to combination of more models.

We address speech enhancement based on variational autoencoders, which involves learning a speech prior distribution in the time-frequency (TF) domain. A zero-mean complex-valued Gaussian distribution is usually assumed for the generative model, where the speech information is encoded in the variance as a function of a latent variable. In contrast to this commonly used approach, we propose a weighted variance generative model, where the contribution of each spectrogram time-frame in parameter learning is weighted. We impose a Gamma prior distribution on the weights, which would effectively lead to a Student's t-distribution instead of Gaussian for speech generative modeling. We develop efficient training and speech enhancement algorithms based on the proposed generative model. Our experimental results on spectrogram auto-encoding and speech enhancement demonstrate the effectiveness and robustness of the proposed approach compared to the standard unweighted variance model.

In recent decades, the use of optical detection systems for meteor studies has increased dramatically, resulting in huge amounts of data being analyzed. Automated meteor detection tools are essential for studying the continuous meteoroid incoming flux, recovering fresh meteorites, and achieving a better understanding of our Solar System. Concerning meteor detection, distinguishing false positives between meteor and non-meteor images has traditionally been performed by hand, which is significantly time-consuming. To address this issue, we developed a fully automated pipeline that uses Convolutional Neural Networks (CNNs) to classify candidate meteor detections. Our new method is able to detect meteors even in images that contain static elements such as clouds, the Moon, and buildings. To accurately locate the meteor within each frame, we employ the Gradient-weighted Class Activation Mapping (Grad-CAM) technique. This method facilitates the identification of the region of interest by multiplying the activations from the last convolutional layer with the average of the gradients across the feature map of that layer. By combining these findings with the activation map derived from the first convolutional layer, we effectively pinpoint the most probable pixel location of the meteor. We trained and evaluated our model on a large dataset collected by the Spanish Meteor Network (SPMN) and achieved a precision of 98\%. Our new methodology presented here has the potential to reduce the workload of meteor scientists and station operators and improve the accuracy of meteor tracking and classification.

Agglomerative hierarchical clustering based on Ordered Weighted Averaging (OWA) operators not only generalises the single, complete, and average linkages, but also includes intercluster distances based on a few nearest or farthest neighbours, trimmed and winsorised means of pairwise point similarities, amongst many others. We explore the relationships between the famous Lance-Williams update formula and the extended OWA-based linkages with weights generated via infinite coefficient sequences. Furthermore, we provide some conditions for the weight generators to guarantee the resulting dendrograms to be free from unaesthetic inversions.

北京阿比特科技有限公司