亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.

相關內容

This paper develops some theory of the matrix Dyson equation (MDE) for correlated linearizations and uses it to solve a problem on asymptotic deterministic equivalent for the test error in random features regression. The theory developed for the correlated MDE includes existence-uniqueness, spectral support bounds, and stability properties of the MDE. This theory is new for constructing deterministic equivalents for pseudoresolvents of a class of correlated linear pencils. In the application, this theory is used to give a deterministic equivalent of the test error in random features ridge regression, in a proportional scaling regime, wherein we have conditioned on both training and test datasets.

Compressed Sensing (CS) encompasses a broad array of theoretical and applied techniques for recovering signals, given partial knowledge of their coefficients. Its applications span various fields, including mathematics, physics, engineering, and several medical sciences. Motivated by our interest in the mathematics behind Magnetic Resonance Imaging (MRI) and CS, we employ convex analysis techniques to analytically determine equivalents of Lagrange multipliers for optimization problems with inequality constraints, specifically a weighted LASSO with voxel-wise weighting. We investigate this problem under assumptions on the fidelity term $\Vert{Ax-b}\Vert_2^2$, either concerning the sign of its gradient or orthogonality-like conditions of its matrix. To be more precise, we either require the sign of each coordinate of $2(Ax-b)^TA$ to be fixed within a rectangular neighborhood of the origin, with the side lengths of the rectangle dependent on the constraints, or we assume $A^TA$ to be diagonal. The objective of this work is to explore the relationship between Lagrange multipliers and the constraints of a weighted variant of LASSO, specifically in the mentioned cases where this relationship can be computed explicitly. As they scale the regularization terms of the weighted LASSO, Lagrange multipliers serve as tuning parameters for the weighted LASSO, prompting the question of their potential effective use as tuning parameters in applications like MR image reconstruction and denoising. This work represents an initial step in this direction.

A class of (block) rational Krylov subspace based projection method for solving large-scale continuous-time algebraic Riccati equation (CARE) $0 = \mathcal{R}(X) := A^HX + XA + C^HC - XBB^HX$ with a large, sparse $A$ and $B$ and $C$ of full low rank is proposed. The CARE is projected onto a block rational Krylov subspace $\mathcal{K}_j$ spanned by blocks of the form $(A^H+ s_kI)C^H$ for some shifts $s_k, k = 1, \ldots, j.$ The considered projections do not need to be orthogonal and are built from the matrices appearing in the block rational Arnoldi decomposition associated to $\mathcal{K}_j.$ The resulting projected Riccati equation is solved for the small square Hermitian $Y_j.$ Then the Hermitian low-rank approximation $X_j = Z_jY_jZ_j^H$ to $X$ is set up where the columns of $Z_j$ span $\mathcal{K}_j.$ The residual norm $\|R(X_j )\|_F$ can be computed efficiently via the norm of a readily available $2p \times 2p$ matrix. We suggest to reduce the rank of the approximate solution $X_j$ even further by truncating small eigenvalues from $X_j.$ This truncated approximate solution can be interpreted as the solution of the Riccati residual projected to a subspace of $\mathcal{K}_j.$ This gives us a way to efficiently evaluate the norm of the resulting residual. Numerical examples are presented.

By approximating posterior distributions with weighted samples, particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems. While the effectiveness of particle filters has been recognised in various applications, their performance relies on the knowledge of dynamic models and measurement models, as well as the construction of effective proposal distributions. An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent, and such data-adaptive particle filtering approaches are often called differentiable particle filters. Due to the expressiveness of neural networks, differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks, such as vision-based robot localisation. In this paper, we review recent advances in differentiable particle filters and their applications. We place special emphasis on different design choices for key components of differentiable particle filters, including dynamic models, measurement models, proposal distributions, optimisation objectives, and differentiable resampling techniques.

Inverse problems, which are related to Maxwell's equations, in the presence of nonlinear materials is a quite new topic in the literature. The lack of contributions in this area can be ascribed to the significant challenges that such problems pose. Retrieving the spatial behaviour of some unknown physical property, from boundary measurements, is a nonlinear and highly ill-posed problem even in the presence of linear materials. Furthermore, this complexity grows exponentially in the presence of nonlinear materials. In the tomography of linear materials, the Monotonicity Principle (MP) is the foundation of a class of non-iterative algorithms able to guarantee excellent performances and compatibility with real-time applications. Recently, the MP has been extended to nonlinear materials under very general assumptions. Starting from the theoretical background for this extension, we develop a first real-time inversion method for the inverse obstacle problem in the presence of nonlinear materials. The proposed method is intendend for all problems governed by the quasilinear Laplace equation, i.e. static problems involving nonlinear materials. In this paper, we provide some preliminary results which give the foundation of our method and some extended numerical examples.

We develop a fourth-order Magnus expansion based quantum algorithm for the simulation of many-body problems involving two-level quantum systems with time-dependent Hamiltonians, $\mathcal{H}(t)$. A major hurdle in the utilization of the Magnus expansion is the appearance of a commutator term which leads to prohibitively long circuits. We present a technique for eliminating this commutator and find that a single time-step of the resulting algorithm is only marginally costlier than that required for time-stepping with a time-independent Hamiltonian, requiring only three additional single-qubit layers. For a large class of Hamiltonians appearing in liquid-state nuclear magnetic resonance (NMR) applications, we further exploit symmetries of the Hamiltonian and achieve a surprising reduction in the expansion, whereby a single time-step of our fourth-order method has a circuit structure and cost that is identical to that required for a fourth-order Trotterized time-stepping procedure for time-independent Hamiltonians. Moreover, our algorithms are able to take time-steps that are larger than the wavelength of oscillation of the time-dependent Hamiltonian, making them particularly suited for highly-oscillatory controls. The resulting quantum circuits have shorter depths for all levels of accuracy when compared to first and second-order Trotterized methods, as well as other fourth-order Trotterized methods, making the proposed algorithm a suitable candidate for simulation of time-dependent Hamiltonians on near-term quantum devices.

Sequences of parametrized Lyapunov equations can be encountered in many application settings. Moreover, solutions of such equations are often intermediate steps of an overall procedure whose main goal is the computation of quantities of the form $f(X)$ where $X$ denotes the solution of a Lyapunov equation. We are interested in addressing problems where the parameter dependency of the coefficient matrix is encoded as a low-rank modification to a \emph{seed}, fixed matrix. We propose two novel numerical procedures that fully exploit such a common structure. The first one builds upon recycling Krylov techniques, and it is well-suited for small dimensional problems as it makes use of dense numerical linear algebra tools. The second algorithm can instead address large-scale problems by relying on state-of-the-art projection techniques based on the extended Krylov subspace. We test the new algorithms on several problems arising in the study of damped vibrational systems and the analyses of output synchronization problems for multi-agent systems. Our results show that the algorithms we propose are superior to state-of-the-art techniques as they are able to remarkably speed up the computation of accurate solutions.

We propose a general optimization-based framework for computing differentially private M-estimators and a new method for constructing differentially private confidence regions. Firstly, we show that robust statistics can be used in conjunction with noisy gradient descent or noisy Newton methods in order to obtain optimal private estimators with global linear or quadratic convergence, respectively. We establish local and global convergence guarantees, under both local strong convexity and self-concordance, showing that our private estimators converge with high probability to a small neighborhood of the non-private M-estimators. Secondly, we tackle the problem of parametric inference by constructing differentially private estimators of the asymptotic variance of our private M-estimators. This naturally leads to approximate pivotal statistics for constructing confidence regions and conducting hypothesis testing. We demonstrate the effectiveness of a bias correction that leads to enhanced small-sample empirical performance in simulations. We illustrate the benefits of our methods in several numerical examples.

Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work develops symplectic GARK schemes for additively partitioned Hamiltonian systems. In a general setting, we derive conditions for symplecticness, as well as symmetry and time-reversibility. We show how symplectic and symmetric schemes can be constructed based on schemes which are only symplectic, or only symmetric. Special attention is given to the special case of partitioned schemes for Hamiltonians split into multiple potential and kinetic energies. Finally we show how symplectic GARK schemes can leverage different time scales and evaluation costs for different potentials, and provide efficient numerical solutions by using different order for these parts.

Considered herein is a Jacobian-free Newton method for the numerical solution of nonlinear equations where the Jacobian is approximated using the complex-step derivative approximation. We demonstrate that this method converges for complex-step values sufficiently small and not necessarily tiny. Notably, in the case of scalar equations the convergence rate becomes quadratic as the complex-step tends to zero. On the other hand, in the case of systems of equations the rate is quadratic for any appropriately small value of the complex-step and not just in the limit to zero. This assertion is substantiated through numerical experiments. Furthermore, we demonstrate the method's seamless applicability in solving nonlinear systems that arise in the context of differential equations, employing it as a Jacobian-free Newton-Krylov method.

北京阿比特科技有限公司