Language-guided image generation has achieved great success nowadays by using diffusion models. However, texts can be less detailed to describe highly-specific subjects such as a particular dog or a certain car, which makes pure text-to-image generation not accurate enough to satisfy user requirements. In this work, we present a novel Unified Multi-Modal Latent Diffusion (UMM-Diffusion) which takes joint texts and images containing specified subjects as input sequences and generates customized images with the subjects. To be more specific, both input texts and images are encoded into one unified multi-modal latent space, in which the input images are learned to be projected to pseudo word embedding and can be further combined with text to guide image generation. Besides, to eliminate the irrelevant parts of the input images such as background or illumination, we propose a novel sampling technique of diffusion models used by the image generator which fuses the results guided by multi-modal input and pure text input. By leveraging the large-scale pre-trained text-to-image generator and the designed image encoder, our method is able to generate high-quality images with complex semantics from both aspects of input texts and images.
Large-scale text-to-video diffusion models have demonstrated an exceptional ability to synthesize diverse videos. However, due to the lack of extensive text-to-video datasets and the necessary computational resources for training, directly applying these models for video stylization remains difficult. Also, given that the noise addition process on the input content is random and destructive, fulfilling the style transfer task's content preservation criteria is challenging. This paper proposes a zero-shot video stylization method named Style-A-Video, which utilizes a generative pre-trained transformer with an image latent diffusion model to achieve a concise text-controlled video stylization. We improve the guidance condition in the denoising process, establishing a balance between artistic expression and structure preservation. Furthermore, to decrease inter-frame flicker and avoid the formation of additional artifacts, we employ a sampling optimization and a temporal consistency module. Extensive experiments show that we can attain superior content preservation and stylistic performance while incurring less consumption than previous solutions. Code will be available at //github.com/haha-lisa/Style-A-Video.
Multimodal-driven talking face generation refers to animating a portrait with the given pose, expression, and gaze transferred from the driving image and video, or estimated from the text and audio. However, existing methods ignore the potential of text modal, and their generators mainly follow the source-oriented feature rearrange paradigm coupled with unstable GAN frameworks. In this work, we first represent the emotion in the text prompt, which could inherit rich semantics from the CLIP, allowing flexible and generalized emotion control. We further reorganize these tasks as the target-oriented texture transfer and adopt the Diffusion Models. More specifically, given a textured face as the source and the rendered face projected from the desired 3DMM coefficients as the target, our proposed Texture-Geometry-aware Diffusion Model decomposes the complex transfer problem into multi-conditional denoising process, where a Texture Attention-based module accurately models the correspondences between appearance and geometry cues contained in source and target conditions, and incorporate extra implicit information for high-fidelity talking face generation. Additionally, TGDM can be gracefully tailored for face swapping. We derive a novel paradigm free of unstable seesaw-style optimization, resulting in simple, stable, and effective training and inference schemes. Extensive experiments demonstrate the superiority of our method.
Recently large-scale language-image models (e.g., text-guided diffusion models) have considerably improved the image generation capabilities to generate photorealistic images in various domains. Based on this success, current image editing methods use texts to achieve intuitive and versatile modification of images. To edit a real image using diffusion models, one must first invert the image to a noisy latent from which an edited image is sampled with a target text prompt. However, most methods lack one of the following: user-friendliness (e.g., additional masks or precise descriptions of the input image are required), generalization to larger domains, or high fidelity to the input image. In this paper, we design an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing. Specifically, our proposed editing method consists of a reconstruction stage and an editing stage. In the first stage, we encode the information of the input image into a learnable conditional embedding via Prompt Tuning Inversion. In the second stage, we apply classifier-free guidance to sample the edited image, where the conditional embedding is calculated by linearly interpolating between the target embedding and the optimized one obtained in the first stage. This technique ensures a superior trade-off between editability and high fidelity to the input image of our method. For example, we can change the color of a specific object while preserving its original shape and background under the guidance of only a target text prompt. Extensive experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.
With the rising industrial attention to 3D virtual modeling technology, generating novel 3D content based on specified conditions (e.g. text) has become a hot issue. In this paper, we propose a new generative 3D modeling framework called Diffusion-SDF for the challenging task of text-to-shape synthesis. Previous approaches lack flexibility in both 3D data representation and shape generation, thereby failing to generate highly diversified 3D shapes conforming to the given text descriptions. To address this, we propose a SDF autoencoder together with the Voxelized Diffusion model to learn and generate representations for voxelized signed distance fields (SDFs) of 3D shapes. Specifically, we design a novel UinU-Net architecture that implants a local-focused inner network inside the standard U-Net architecture, which enables better reconstruction of patch-independent SDF representations. We extend our approach to further text-to-shape tasks including text-conditioned shape completion and manipulation. Experimental results show that Diffusion-SDF generates both higher quality and more diversified 3D shapes that conform well to given text descriptions when compared to previous approaches. Code is available at: //github.com/ttlmh/Diffusion-SDF
Recent advances in image captioning are mainly driven by large-scale vision-language pretraining, relying heavily on computational resources and increasingly large multimodal datasets. Instead of scaling up pretraining data, we ask whether it is possible to improve performance by improving the quality of the samples in existing datasets. We pursue this question through two approaches to data curation: one that assumes that some examples should be avoided due to mismatches between the image and caption, and one that assumes that the mismatch can be addressed by replacing the image, for which we use the state-of-the-art Stable Diffusion model. These approaches are evaluated using the BLIP model on MS COCO and Flickr30K in both finetuning and few-shot learning settings. Our simple yet effective approaches consistently outperform baselines, indicating that better image captioning models can be trained by curating existing resources. Finally, we conduct a human study to understand the errors made by the Stable Diffusion model and highlight directions for future work in text-to-image generation.
Diffusion models have the ability to generate high quality images by denoising pure Gaussian noise images. While previous research has primarily focused on improving the control of image generation through adjusting the denoising process, we propose a novel direction of manipulating the initial noise to control the generated image. Through experiments on stable diffusion, we show that blocks of pixels in the initial latent images have a preference for generating specific content, and that modifying these blocks can significantly influence the generated image. In particular, we show that modifying a part of the initial image affects the corresponding region of the generated image while leaving other regions unaffected, which is useful for repainting tasks. Furthermore, we find that the generation preferences of pixel blocks are primarily determined by their values, rather than their position. By moving pixel blocks with a tendency to generate user-desired content to user-specified regions, our approach achieves state-of-the-art performance in layout-to-image generation. Our results highlight the flexibility and power of initial image manipulation in controlling the generated image.
Given a small set of images of a specific subject, subject-driven text-to-image generation aims to generate customized images of the subject according to new text descriptions, which has attracted increasing attention in the community recently. Current subject-driven text-to-image generation methods are mainly based on finetuning a pretrained large-scale text-to-image generation model. However, these finetuning methods map the images of the subject into an embedding highly entangled with subject-identity-unrelated information, which may result in the inconsistency between the generated images and the text descriptions and the changes in the subject identity. To tackle the problem, we propose DisenBooth, a disentangled parameter-efficient tuning framework for subject-driven text-to-image generation. DisenBooth enables generating new images that simultaneously preserve the subject identity and conform to the text descriptions, by disentangling the embedding into an identity-related and an identity-unrelated part. Specifically, DisenBooth is based on the pretrained diffusion models and conducts finetuning in the diffusion denoising process, where a shared identity embedding and an image-specific identity-unrelated embedding are utilized jointly for denoising each image. To make the two embeddings disentangled, two auxiliary objectives are proposed. Additionally, to improve the finetuning efficiency, a parameter-efficient finetuning strategy is adopted. Extensive experiments show that our DisenBooth can faithfully learn well-disentangled identity-related and identity-unrelated embeddings. With the shared identity embedding, DisenBooth demonstrates superior subject-driven text-to-image generation ability. Additionally, DisenBooth provides a more flexible and controllable framework with different combinations of the disentangled embeddings.
Diffusion-based generative models' impressive ability to create convincing images has captured global attention. However, their complex internal structures and operations often make them difficult for non-experts to understand. We present Diffusion Explainer, the first interactive visualization tool that explains how Stable Diffusion transforms text prompts into images. Diffusion Explainer tightly integrates a visual overview of Stable Diffusion's complex components with detailed explanations of their underlying operations, enabling users to fluidly transition between multiple levels of abstraction through animations and interactive elements. By comparing the evolutions of image representations guided by two related text prompts over refinement timesteps, users can discover the impact of prompts on image generation. Diffusion Explainer runs locally in users' web browsers without the need for installation or specialized hardware, broadening the public's education access to modern AI techniques. Our open-sourced tool is available at: //poloclub.github.io/diffusion-explainer/.
Automatically generating high-quality real world 3D scenes is of enormous interest for applications such as virtual reality and robotics simulation. Towards this goal, we introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments. We leverage Latent Diffusion Models that have been successfully utilized for efficient high-quality 2D content creation. We first train a scene auto-encoder to express a set of image and pose pairs as a neural field, represented as density and feature voxel grids that can be projected to produce novel views of the scene. To further compress this representation, we train a latent-autoencoder that maps the voxel grids to a set of latent representations. A hierarchical diffusion model is then fit to the latents to complete the scene generation pipeline. We achieve a substantial improvement over existing state-of-the-art scene generation models. Additionally, we show how NeuralField-LDM can be used for a variety of 3D content creation applications, including conditional scene generation, scene inpainting and scene style manipulation.
Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on answering questions that have rare answers. In addition, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, which achieves similar performance to separately optimized single-task models. Our code will be publicly available at: //github.com/j-min/VL-T5