亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we analyze two large-scale surveys to examine how individuals think about sharing smartphone access with romantic partners as a function of trust in relationships. We find that the majority of couples have access to each others' devices, but may have explicit or implicit boundaries on how this access is to be used. Investigating these boundaries and related social norms, we find that there is little consensus about the level of smartphone access (i.e., transparency), or lack thereof (i.e., privacy) that is desirable in romantic contexts. However, there is broad agreement that the level of access should be mutual and consensual. Most individuals understand trust to be the basis of their decisions about transparency and privacy. Furthermore, we find individuals have crossed these boundaries, violating their partners' privacy and betraying their trust. We examine how, when, why, and by whom these betrayals occur. We consider the ramifications of these boundary violations in the case of intimate partner violence. Finally, we provide recommendations for design changes to enable technological enforcement of boundaries currently enforced by trust, bringing access control in line with users' sharing preferences.

相關內容

In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decouples the dynamics of flat and sharp directions, which boosts the sharpness reduction along flat directions while maintaining the training stability in sharp directions. We show that IRE can be practically incorporated with {\em generic base optimizers} without introducing significant computational overload. Experiments show that IRE consistently improves the generalization performance for image classification tasks across a variety of benchmark datasets (CIFAR-10/100, ImageNet) and models (ResNets and ViTs). Surprisingly, IRE also achieves a $2\times$ {\em speed-up} compared to AdamW in the pre-training of Llama models (of sizes ranging from 60M to 229M) on datasets including Wikitext-103, Minipile, and Openwebtext. Moreover, we provide theoretical guarantees, showing that IRE can substantially accelerate the convergence towards flat minima in Sharpness-aware Minimization (SAM).

As generative foundation models improve, they also tend to become more persuasive, raising concerns that AI automation will enable governments, firms, and other actors to manipulate beliefs with unprecedented scale and effectiveness at virtually no cost. The full economic and social ramifications of this trend have been difficult to foresee, however, given that we currently lack a complete theoretical understanding of why persuasion is costly for human labor to produce in the first place. This paper places human and AI agents on a common conceptual footing by formalizing informational persuasion as a mathematical decision problem and characterizing its computational complexity. A novel proof establishes that persuasive messages are challenging to discover (NP-Hard) but easy to adopt if supplied by others (NP). This asymmetry helps explain why people are susceptible to persuasion, even in contexts where all relevant information is publicly available. The result also illuminates why litigation, strategic communication, and other persuasion-oriented activities have historically been so human capital intensive, and it provides a new theoretical basis for studying how AI will impact various industries.

In this work, we tackle the problem of bandwidth estimation (BWE) for real-time communication systems through expert personalization. While expert heuristic-based methods have been widely adopted, tailoring these methods for each and every end user environment is cumbersome due to the level of domain expertise and manual effort required to adjust the carefully tuned heuristic parameters. Thus. we propose Merlin, a data-driven solution to BWE that harnesses expert demonstrations from prior heuristic-based methods to extract an expert BWE policy. The extracted policy can then be finetuned to end user network conditions to improve user quality of experience (QoE). In real-world videoconferencing calls, Merlin matches our expert's policy with no statistically significant movements in terms of objective QoE metrics. Additionally, we show that personalizing Merlin's control policy is possible through a small number of online data-driven parameter updates.

As wearable-based data annotation remains, to date, a tedious, time-consuming task requiring researchers to dedicate substantial time, benchmark datasets within the field of Human Activity Recognition in lack richness and size compared to datasets available within related fields. Recently, vision foundation models such as CLIP have gained significant attention, helping the vision community advance in finding robust, generalizable feature representations. With the majority of researchers within the wearable community relying on vision modalities to overcome the limited expressiveness of wearable data and accurately label their to-be-released benchmark datasets offline, we propose a novel, clustering-based annotation pipeline to significantly reduce the amount of data that needs to be annotated by a human annotator. We show that using our approach, the annotation of centroid clips suffices to achieve average labelling accuracies close to 90% across three publicly available HAR benchmark datasets. Using the weakly annotated datasets, we further demonstrate that we can match the accuracy scores of fully-supervised deep learning classifiers across all three benchmark datasets. Code as well as supplementary figures and results are publicly downloadable via github.com/mariusbock/weak_har.

In this paper, we propose a data-driven method to learn interpretable topological features of biomolecular data and demonstrate the efficacy of parsimonious models trained on topological features in predicting the stability of synthetic mini proteins. We compare models that leverage automatically-learned structural features against models trained on a large set of biophysical features determined by subject-matter experts (SME). Our models, based only on topological features of the protein structures, achieved 92%-99% of the performance of SME-based models in terms of the average precision score. By interrogating model performance and feature importance metrics, we extract numerous insights that uncover high correlations between topological features and SME features. We further showcase how combining topological features and SME features can lead to improved model performance over either feature set used in isolation, suggesting that, in some settings, topological features may provide new discriminating information not captured in existing SME features that are useful for protein stability prediction.

In this work, we investigate facial anonymization techniques in 360{\deg} videos and assess their influence on the perceived realism, anonymization effect, and presence of participants. In comparison to traditional footage, 360{\deg} videos can convey engaging, immersive experiences that accurately represent the atmosphere of real-world locations. As the entire environment is captured simultaneously, it is necessary to anonymize the faces of bystanders in recordings of public spaces. Since this alters the video content, the perceived realism and immersion could be reduced. To understand these effects, we compare non-anonymized and anonymized 360{\deg} videos using blurring, black boxes, and face-swapping shown either on a regular screen or in a head-mounted display (HMD). Our results indicate significant differences in the perception of the anonymization techniques. We find that face-swapping is most realistic and least disruptive, however, participants raised concerns regarding the effectiveness of the anonymization. Furthermore, we observe that presence is affected by facial anonymization in HMD condition. Overall, the results underscore the need for facial anonymization techniques that balance both photo-realism and a sense of privacy.

In this work, we show that exploiting additional variables in a mixed finite element formulation of deformation leads to an efficient physics-based character skinning algorithm. Taking as input, a user-defined rig, we show how to efficiently compute deformations of the character mesh which respect artist-supplied handle positions and orientations, but without requiring complicated constraints on the physics solver, which can cause poor performance. Rather we demonstrate an efficient, user controllable skinning pipeline that can generate compelling character deformations, using a variety of physics material models.

In this work, we want to give an overview on which pragmatic abilities have been tested in LLMs so far and how these tests have been carried out. To do this, we first discuss the scope of the field of pragmatics and suggest a subdivision into discourse pragmatics and interactional pragmatics. We give a non-exhaustive overview of the phenomena of those two subdomains and the methods traditionally used to analyze them. We subsequently consider the resulting heterogeneous set of phenomena and methods as a starting point for our survey of work on discourse pragmatics and interactional pragmatics in the context of LLMs.

The emergence of Large Language Models (LLMs) have fundamentally altered the way we interact with digital systems and have led to the pursuit of LLM powered AI agents to assist in daily workflows. LLMs, whilst powerful and capable of demonstrating some emergent properties, are not logical reasoners and often struggle to perform well at all sub-tasks carried out by an AI agent to plan and execute a workflow. While existing studies tackle this lack of proficiency by generalised pretraining at a huge scale or by specialised fine-tuning for tool use, we assess if a system comprising of a coalition of pretrained LLMs, each exhibiting specialised performance at individual sub-tasks, can match the performance of single model agents. The coalition of models approach showcases its potential for building robustness and reducing the operational costs of these AI agents by leveraging traits exhibited by specific models. Our findings demonstrate that fine-tuning can be mitigated by considering a coalition of pretrained models and believe that this approach can be applied to other non-agentic systems which utilise LLMs.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司