亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a Random Graph Model on $\mathbb{Z}^{d}$ that incorporates the interplay between the statistics of the graph and the underlying space where the vertices are located. Based on a graphical construction of the model as the invariant measure of a birth and death process, we prove the existence and uniqueness of a measure defined on graphs with vertices in $\mathbb{Z}^{d}$ which coincides with the limit along the measures over graphs with finite vertex set. As a consequence, theoretical properties such as exponential mixing of the infinite volume measure and central limit theorem for averages of a real-valued function of the graph are obtained. Moreover, a perfect simulation algorithm based on the clan of ancestors is described in order to sample a finite window of the equilibrium measure defined on $\mathbb{Z}^{d}$.

相關內容

Signature-based algorithms have become a standard approach for computing Gr\"obner bases in commutative polynomial rings. However, so far, it was not clear how to extend this concept to the setting of noncommutative polynomials in the free algebra. In this paper, we present a signature-based algorithm for computing Gr\"obner bases in precisely this setting. The algorithm is an adaptation of Buchberger's algorithm including signatures. We prove that our algorithm correctly enumerates a signature Gr\"obner basis as well as a Gr\"obner basis of the module generated by the leading terms of the generators' syzygies, and that it terminates whenever the ideal admits a finite signature Gr\"obner basis. Additionally, we adapt well-known signature-based criteria eliminating redundant reductions, such as the syzygy criterion, the F5 criterion and the singular criterion, to the case of noncommutative polynomials. We also generalize reconstruction methods from the commutative setting that allow to recover, from partial information about signatures, the coordinates of elements of a Gr\"obner basis in terms of the input polynomials, as well as a basis of the syzygy module of the generators. We have written a toy implementation of all the algorithms in the Mathematica package OperatorGB and we compare our signature-based algorithm to the classical Buchberger algorithm for noncommutative polynomials.

An efficient implicit representation of an $n$-vertex graph $G$ in a family $\mathcal{F}$ of graphs assigns to each vertex of $G$ a binary code of length $O(\log n)$ so that the adjacency between every pair of vertices can be determined only as a function of their codes. This function can depend on the family but not on the individual graph. Every family of graphs admitting such a representation contains at most $2^{O(n\log(n))}$ graphs on $n$ vertices, and thus has at most factorial speed of growth. The Implicit Graph Conjecture states that, conversely, every hereditary graph family with at most factorial speed of growth admits an efficient implicit representation. We refute this conjecture by establishing the existence of hereditary graph families with factorial speed of growth that require codes of length $n^{\Omega(1)}$.

Statistical models are central to machine learning with broad applicability across a range of downstream tasks. The models are typically controlled by free parameters that are estimated from data by maximum-likelihood estimation. However, when faced with real-world datasets many of the models run into a critical issue: they are formulated in terms of fully-observed data, whereas in practice the datasets are plagued with missing data. The theory of statistical model estimation from incomplete data is conceptually similar to the estimation of latent-variable models, where powerful tools such as variational inference (VI) exist. However, in contrast to standard latent-variable models, parameter estimation with incomplete data often requires estimating exponentially-many conditional distributions of the missing variables, hence making standard VI methods intractable. We address this gap by introducing variational Gibbs inference (VGI), a new general-purpose method to estimate the parameters of statistical models from incomplete data. We validate VGI on a set of synthetic and real-world estimation tasks, estimating important machine learning models, VAEs and normalising flows, from incomplete data. The proposed method, whilst general-purpose, achieves competitive or better performance than existing model-specific estimation methods.

Let CMSO denote the counting monadic second order logic of graphs. We give a constructive proof that for some computable function $f$, there is an algorithm $\mathfrak{A}$ that takes as input a CMSO sentence $\varphi$, a positive integer $t$, and a connected graph $G$ of maximum degree at most $\Delta$, and determines, in time $f(|\varphi|,t)\cdot 2^{O(\Delta \cdot t)}\cdot |G|^{O(t)}$, whether $G$ has a supergraph $G'$ of treewidth at most $t$ such that $G'\models \varphi$. The algorithmic metatheorem described above sheds new light on certain unresolved questions within the framework of graph completion algorithms. In particular, using this metatheorem, we provide an explicit algorithm that determines, in time $f(d)\cdot 2^{O(\Delta \cdot d)}\cdot |G|^{O(d)}$, whether a connected graph of maximum degree $\Delta$ has a planar supergraph of diameter at most $d$. Additionally, we show that for each fixed $k$, the problem of determining whether $G$ has an $k$-outerplanar supergraph of diameter at most $d$ is strongly uniformly fixed parameter tractable with respect to the parameter $d$. This result can be generalized in two directions. First, the diameter parameter can be replaced by any contraction-closed effectively CMSO-definable parameter $\mathbf{p}$. Examples of such parameters are vertex-cover number, dominating number, and many other contraction-bidimensional parameters. In the second direction, the planarity requirement can be relaxed to bounded genus, and more generally, to bounded local treewidth.

This paper is concerned with the lossy compression of general random variables, specifically with rate-distortion theory and quantization of random variables taking values in general measurable spaces such as, e.g., manifolds and fractal sets. Manifold structures are prevalent in data science, e.g., in compressed sensing, machine learning, image processing, and handwritten digit recognition. Fractal sets find application in image compression and in the modeling of Ethernet traffic. Our main contributions are bounds on the rate-distortion function and the quantization error. These bounds are very general and essentially only require the existence of reference measures satisfying certain regularity conditions in terms of small ball probabilities. To illustrate the wide applicability of our results, we particularize them to random variables taking values in i) manifolds, namely, hyperspheres and Grassmannians, and ii) self-similar sets characterized by iterated function systems satisfying the weak separation property.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

In order to facilitate the accesses of general users to knowledge graphs, an increasing effort is being exerted to construct graph-structured queries of given natural language questions. At the core of the construction is to deduce the structure of the target query and determine the vertices/edges which constitute the query. Existing query construction methods rely on question understanding and conventional graph-based algorithms which lead to inefficient and degraded performances facing complex natural language questions over knowledge graphs with large scales. In this paper, we focus on this problem and propose a novel framework standing on recent knowledge graph embedding techniques. Our framework first encodes the underlying knowledge graph into a low-dimensional embedding space by leveraging generalized local knowledge graphs. Given a natural language question, the learned embedding representations of the knowledge graph are utilized to compute the query structure and assemble vertices/edges into the target query. Extensive experiments were conducted on the benchmark dataset, and the results demonstrate that our framework outperforms state-of-the-art baseline models regarding effectiveness and efficiency.

Deep learning is the mainstream technique for many machine learning tasks, including image recognition, machine translation, speech recognition, and so on. It has outperformed conventional methods in various fields and achieved great successes. Unfortunately, the understanding on how it works remains unclear. It has the central importance to lay down the theoretic foundation for deep learning. In this work, we give a geometric view to understand deep learning: we show that the fundamental principle attributing to the success is the manifold structure in data, namely natural high dimensional data concentrates close to a low-dimensional manifold, deep learning learns the manifold and the probability distribution on it. We further introduce the concepts of rectified linear complexity for deep neural network measuring its learning capability, rectified linear complexity of an embedding manifold describing the difficulty to be learned. Then we show for any deep neural network with fixed architecture, there exists a manifold that cannot be learned by the network. Finally, we propose to apply optimal mass transportation theory to control the probability distribution in the latent space.

Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.

This paper introduces the Hawkes skeleton and the Hawkes graph. These objects summarize the branching structure of a multivariate Hawkes point process in a compact, yet meaningful way. We demonstrate how graph-theoretic vocabulary (`ancestor sets', `parent sets', `connectivity', `walks', `walk weights', ...) is very convenient for the discussion of multivariate Hawkes processes. For example, we reformulate the classic eigenvalue-based subcriticality criterion of multitype branching processes in graph terms. Next to these more terminological contributions, we show how the graph view may be used for the specification and estimation of Hawkes models from large, multitype event streams. Based on earlier work, we give a nonparametric statistical procedure to estimate the Hawkes skeleton and the Hawkes graph from data. We show how the graph estimation may then be used for specifying and fitting parametric Hawkes models. Our estimation method avoids the a priori assumptions on the model from a straighforward MLE-approach and is numerically more flexible than the latter. Our method has two tuning parameters: one controlling numerical complexity, the other one controlling the sparseness of the estimated graph. A simulation study confirms that the presented procedure works as desired. We pay special attention to computational issues in the implementation. This makes our results applicable to high-dimensional event-stream data, such as dozens of event streams and thousands of events per component.

北京阿比特科技有限公司