亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we consider the problem of fitting Random Utility Models (RUMs) to user choices. Given the winner distributions of the subsets of size $k$ of a universe, we obtain a polynomial-time algorithm that finds the RUM that best approximates the given distribution on average. Our algorithm is based on a linear program that we solve using the ellipsoid method. Given that its corresponding separation oracle problem is NP-hard, we devise an approximate separation oracle that can be viewed as a generalization of the weighted feedback arc set problem to hypergraphs. Our theoretical result can also be made practical: we obtain a heuristic that is effective and scales to real-world datasets.

相關內容

Sampling is a common strategy for generating text from probabilistic models, yet standard ancestral sampling often results in text that is incoherent or ungrammatical. To alleviate this issue, various modifications to a model's sampling distribution, such as nucleus or top-k sampling, have been introduced and are now ubiquitously used in language generation systems. We propose a unified framework for understanding these techniques, which we term sampling adapters. Sampling adapters often lead to qualitatively better text, which raises the question: From a formal perspective, how are they changing the (sub)word-level distributions of language generation models? And why do these local changes lead to higher-quality text? We argue that the shift they enforce can be viewed as a trade-off between precision and recall: while the model loses its ability to produce certain strings, its precision rate on desirable text increases. While this trade-off is not reflected in standard metrics of distribution quality (such as perplexity), we find that several precision-emphasizing measures indeed indicate that sampling adapters can lead to probability distributions more aligned with the true distribution. Further, these measures correlate with higher sequence-level quality scores, specifically, Mauve.

The theory of mixed finite element methods for solving different types of elliptic partial differential equations in saddle-point formulation is well established since many decades. However, this topic was mostly studied for variational formulations defined upon the same finite-element product spaces of both shape- and test-pairs of primal variable-multiplier. Whenever these two product spaces are different the saddle point problem is asymmetric. It turns out that the conditions to be satisfied by the finite elements product spaces stipulated in the few works on this case may be of limited use in practice. The purpose of this paper is to provide an in-depth analysis of the well-posedness and the uniform stability of asymmetric approximate saddle point problems, based on the theory of continuous linear operators on Hilbert spaces. Our approach leads to necessary and sufficient conditions for such properties to hold, expressed in a readily exploitable form with fine constants. In particular standard interpolation theory suffices to estimate the error of a conforming method.

Scalarization is a general technique that can be deployed in any multiobjective setting to reduce multiple objectives into one, such as recently in RLHF for training reward models that align human preferences. Yet some have dismissed this classical approach because linear scalarizations are known to miss concave regions of the Pareto frontier. To that end, we aim to find simple non-linear scalarizations that can explore a diverse set of $k$ objectives on the Pareto frontier, as measured by the dominated hypervolume. We show that hypervolume scalarizations with uniformly random weights are surprisingly optimal for provably minimizing the hypervolume regret, achieving an optimal sublinear regret bound of $O(T^{-1/k})$, with matching lower bounds that preclude any algorithm from doing better asymptotically. As a theoretical case study, we consider the multiobjective stochastic linear bandits problem and demonstrate that by exploiting the sublinear regret bounds of the hypervolume scalarizations, we can derive a novel non-Euclidean analysis that produces improved hypervolume regret bounds of $\tilde{O}( d T^{-1/2} + T^{-1/k})$. We support our theory with strong empirical performance of using simple hypervolume scalarizations that consistently outperforms both the linear and Chebyshev scalarizations, as well as standard multiobjective algorithms in bayesian optimization, such as EHVI.

This paper is devoted to the statistical and numerical properties of the geometric median, and its applications to the problem of robust mean estimation via the median of means principle. Our main theoretical results include (a) an upper bound for the distance between the mean and the median for general absolutely continuous distributions in R^d, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension $d$; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce improved bounds for the (geometric) median of means estimator that hold for large classes of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is an important practical aspect of any statistical estimation procedure. We demonstrate that the objective function minimized by the geometric median satisfies a "local quadratic growth" condition that allows one to translate suboptimality bounds for the objective function to the corresponding bounds for the numerical approximation to the median itself. As a corollary, we propose a simple stopping rule (applicable to any optimization method) which yields explicit error guarantees. We conclude with the numerical experiments including the application to estimation of mean values of log-returns for S&P 500 data.

The Shapley value is arguably the most popular approach for assigning a meaningful contribution value to players in a cooperative game, which has recently been used intensively in explainable artificial intelligence. The meaningfulness is due to axiomatic properties that only the Shapley value satisfies, which, however, comes at the expense of an exact computation growing exponentially with the number of agents. Accordingly, a number of works are devoted to the efficient approximation of the Shapley values, most of them revolve around the notion of an agent's marginal contribution. In this paper, we propose with SVARM and Stratified SVARM two parameter-free and domain-independent approximation algorithms based on a representation of the Shapley value detached from the notion of marginal contributions. We prove unmatched theoretical guarantees regarding their approximation quality and provide empirical results including synthetic games as well as common explainability use cases comparing ourselves with state-of-the-art methods.

Forward simulation-based uncertainty quantification that studies the distribution of quantities of interest (QoI) is a crucial component for computationally robust engineering design and prediction. There is a large body of literature devoted to accurately assessing statistics of QoIs, and in particular, multilevel or multifidelity approaches are known to be effective, leveraging cost-accuracy tradeoffs between a given ensemble of models. However, effective algorithms that can estimate the full distribution of QoIs are still under active development. In this paper, we introduce a general multifidelity framework for estimating the cumulative distribution function (CDF) of a vector-valued QoI associated with a high-fidelity model under a budget constraint. Given a family of appropriate control variates obtained from lower-fidelity surrogates, our framework involves identifying the most cost-effective model subset and then using it to build an approximate control variates estimator for the target CDF. We instantiate the framework by constructing a family of control variates using intermediate linear approximators and rigorously analyze the corresponding algorithm. Our analysis reveals that the resulting CDF estimator is uniformly consistent and asymptotically optimal as the budget tends to infinity, with only mild moment and regularity assumptions on the joint distribution of QoIs. The approach provides a robust multifidelity CDF estimator that is adaptive to the available budget, does not require \textit{a priori} knowledge of cross-model statistics or model hierarchy, and applies to multiple dimensions. We demonstrate the efficiency and robustness of the approach using test examples of parametric PDEs and stochastic differential equations including both academic instances and more challenging engineering problems.

The Independent Cutset problem asks whether there is a set of vertices in a given graph that is both independent and a cutset. Such a problem is $\textsf{NP}$-complete even when the input graph is planar and has maximum degree five. In this paper, we first present a $\mathcal{O}^*(1.4423^{n})$-time algorithm for the problem. We also show how to compute a minimum independent cutset (if any) in the same running time. Since the property of having an independent cutset is MSO$_1$-expressible, our main results are concerned with structural parameterizations for the problem considering parameters that are not bounded by a function of the clique-width of the input. We present $\textsf{FPT}$-time algorithms for the problem considering the following parameters: the dual of the maximum degree, the dual of the solution size, the size of a dominating set (where a dominating set is given as an additional input), the size of an odd cycle transversal, the distance to chordal graphs, and the distance to $P_5$-free graphs. We close by introducing the notion of $\alpha$-domination, which allows us to identify more fixed-parameter tractable and polynomial-time solvable cases.

Probability density estimation is a core problem of statistics and signal processing. Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. In this paper, we propose a non-classical parametrization for density estimation using sample moments, which does not require the choice of such functions. The parametrization is induced by the squared Hellinger distance, and the solution of it, which is proved to exist and be unique subject to a simple prior that does not depend on data, and can be obtained by convex optimization. Statistical properties of the density estimator, together with an asymptotic error upper bound are proposed for the estimator by power moments. Applications of the proposed density estimator in signal processing tasks are given. Simulation results validate the performance of the estimator by a comparison to several prevailing methods. To the best of our knowledge, the proposed estimator is the first one in the literature for which the power moments up to an arbitrary even order exactly match the sample moments, while the true density is not assumed to fall within specific function classes.

Synthetic time series are often used in practical applications to augment the historical time series dataset for better performance of machine learning algorithms, amplify the occurrence of rare events, and also create counterfactual scenarios described by the time series. Distributional-similarity (which we refer to as realism) as well as the satisfaction of certain numerical constraints are common requirements in counterfactual time series scenario generation requests. For instance, the US Federal Reserve publishes synthetic market stress scenarios given by the constrained time series for financial institutions to assess their performance in hypothetical recessions. Existing approaches for generating constrained time series usually penalize training loss to enforce constraints, and reject non-conforming samples. However, these approaches would require re-training if we change constraints, and rejection sampling can be computationally expensive, or impractical for complex constraints. In this paper, we propose a novel set of methods to tackle the constrained time series generation problem and provide efficient sampling while ensuring the realism of generated time series. In particular, we frame the problem using a constrained optimization framework and then we propose a set of generative methods including ``GuidedDiffTime'', a guided diffusion model to generate realistic time series. Empirically, we evaluate our work on several datasets for financial and energy data, where incorporating constraints is critical. We show that our approaches outperform existing work both qualitatively and quantitatively. Most importantly, we show that our ``GuidedDiffTime'' model is the only solution where re-training is not necessary for new constraints, resulting in a significant carbon footprint reduction.

Entangled states shared among distant nodes are frequently used in quantum network applications. When quantum resources are abundant, entangled states can be continuously distributed across the network, allowing nodes to consume them whenever necessary. This continuous distribution of entanglement enables quantum network applications to operate continuously while being regularly supplied with entangled states. Here, we focus on the steady-state performance analysis of protocols for continuous distribution of entanglement. We propose the virtual neighborhood size and the virtual node degree as performance metrics. We utilize the concept of Pareto optimality to formulate a multi-objective optimization problem to maximize the performance. As an example, we solve the problem for a quantum network with a tree topology. One of the main conclusions from our analysis is that the entanglement consumption rate has a greater impact on the protocol performance than the fidelity requirements. The metrics that we establish in this manuscript can be utilized to assess the feasibility of entanglement distribution protocols for large-scale quantum networks.

北京阿比特科技有限公司