亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The growing demand for electric vehicles requires the development of automated car charging methods. At the moment, the process of charging an electric car is completely manual, and that requires physical effort to accomplish the task, which is not suitable for people with disabilities. Typically, the effort in the automation of the charging task research is focused on detecting the position and orientation of the socket, which resulted in a relatively high accuracy, 5 mm, and 10 degrees. However, this accuracy is not enough to complete the charging process. In this work, we focus on designing a novel methodology for robust robotic plug-in and plug-out based on human haptics to overcome the error in the orientation of the socket. Participants were invited to perform the charging task, and their cognitive capabilities were recognized by measuring the applied forces along with the movements of the charger. Eventually, an algorithm was developed based on the human's best strategies to be applied to a robotic arm.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Adept traffic models are critical to both planning and closed-loop simulation for autonomous vehicles (AV), and key design objectives include accuracy, diverse multimodal behaviors, interpretability, and downstream compatibility. Recently, with the advent of large language models (LLMs), an additional desirable feature for traffic models is LLM compatibility. We present Categorical Traffic Transformer (CTT), a traffic model that outputs both continuous trajectory predictions and tokenized categorical predictions (lane modes, homotopies, etc.). The most outstanding feature of CTT is its fully interpretable latent space, which enables direct supervision of the latent variable from the ground truth during training and avoids mode collapse completely. As a result, CTT can generate diverse behaviors conditioned on different latent modes with semantic meanings while beating SOTA on prediction accuracy. In addition, CTT's ability to input and output tokens enables integration with LLMs for common-sense reasoning and zero-shot generalization.

As generative large model capabilities advance, safety concerns become more pronounced in their outputs. To ensure the sustainable growth of the AI ecosystem, it's imperative to undertake a holistic evaluation and refinement of associated safety risks. This survey presents a framework for safety research pertaining to large models, delineating the landscape of safety risks as well as safety evaluation and improvement methods. We begin by introducing safety issues of wide concern, then delve into safety evaluation methods for large models, encompassing preference-based testing, adversarial attack approaches, issues detection, and other advanced evaluation methods. Additionally, we explore the strategies for enhancing large model safety from training to deployment, highlighting cutting-edge safety approaches for each stage in building large models. Finally, we discuss the core challenges in advancing towards more responsible AI, including the interpretability of safety mechanisms, ongoing safety issues, and robustness against malicious attacks. Through this survey, we aim to provide clear technical guidance for safety researchers and encourage further study on the safety of large models.

This paper addresses the traffic management problem for autonomous vehicles at intersections without traffic signals. In the current system, a road junction has no traffic signals when the traffic volume is low to medium. Installing infrastructure at each unsignalled crossing to coordinate autonomous cars can be formidable. We propose a novel decentralized strategy where the vehicles use a harmony matrix to find the best possible combination of the cars to cross the intersection without any crashes. We formulate a maximal clique problem using harmony matrix that maximizes the intersection throughput. This algorithm does not require communication between the vehicles. We compared our work with state-of-the-art communicative strategies and widely used traditional and modern methods for intersection management. Through extensive simulation, we showed that our algorithm is comparable to state-of-the-art and outperforms traditional methods.

Understanding how the surrounding environment changes is crucial for performing downstream tasks safely and reliably in autonomous driving applications. Recent occupancy estimation techniques using only camera images as input can provide dense occupancy representations of large-scale scenes based on the current observation. However, they are mostly limited to representing the current 3D space and do not consider the future state of surrounding objects along the time axis. To extend camera-only occupancy estimation into spatiotemporal prediction, we propose Cam4DOcc, a new benchmark for camera-only 4D occupancy forecasting, evaluating the surrounding scene changes in a near future. We build our benchmark based on multiple publicly available datasets, including nuScenes, nuScenes-Occupancy, and Lyft-Level5, which provides sequential occupancy states of general movable and static objects, as well as their 3D backward centripetal flow. To establish this benchmark for future research with comprehensive comparisons, we introduce four baseline types from diverse camera-based perception and prediction implementations, including a static-world occupancy model, voxelization of point cloud prediction, 2D-3D instance-based prediction, and our proposed novel end-to-end 4D occupancy forecasting network. Furthermore, the standardized evaluation protocol for preset multiple tasks is also provided to compare the performance of all the proposed baselines on present and future occupancy estimation with respect to objects of interest in autonomous driving scenarios. The dataset and our implementation of all four baselines in the proposed Cam4DOcc benchmark will be released here: //github.com/haomo-ai/Cam4DOcc.

Although the expenses associated with DNA sequencing have been rapidly decreasing, the current cost of sequencing information stands at roughly $120/GB, which is dramatically more expensive than reading from existing archival storage solutions today. In this work, we aim to reduce not only the cost but also the latency of DNA storage by initiating the study of the DNA coverage depth problem, which aims to reduce the required number of reads to retrieve information from the storage system. Under this framework, our main goal is to understand the effect of error-correcting codes and retrieval algorithms on the required sequencing coverage depth. We establish that the expected number of reads that are required for information retrieval is minimized when the channel follows a uniform distribution. We also derive upper and lower bounds on the probability distribution of this number of required reads and provide a comprehensive upper and lower bound on its expected value. We further prove that for a noiseless channel and uniform distribution, MDS codes are optimal in terms of minimizing the expected number of reads. Additionally, we study the DNA coverage depth problem under the random-access setup, in which the user aims to retrieve just a specific information unit from the entire DNA storage system. We prove that the expected retrieval time is at least k for [n,k] MDS codes as well as for other families of codes. Furthermore, we present explicit code constructions that achieve expected retrieval times below k and evaluate their performance through analytical methods and simulations. Lastly, we provide lower bounds on the maximum expected retrieval time. Our findings offer valuable insights for reducing the cost and latency of DNA storage.

Face recognition (FR) technology plays a crucial role in various applications, but its vulnerability to adversarial attacks poses significant security concerns. Existing research primarily focuses on transferability to different FR models, overlooking the direct transferability to victim's face images, which is a practical threat in real-world scenarios. In this study, we propose a novel adversarial attack method that considers both the transferability to the FR model and the victim's face image, called NeRFTAP. Leveraging NeRF-based 3D-GAN, we generate new view face images for the source and target subjects to enhance transferability of adversarial patches. We introduce a style consistency loss to ensure the visual similarity between the adversarial UV map and the target UV map under a 0-1 mask, enhancing the effectiveness and naturalness of the generated adversarial face images. Extensive experiments and evaluations on various FR models demonstrate the superiority of our approach over existing attack techniques. Our work provides valuable insights for enhancing the robustness of FR systems in practical adversarial settings.

Communication delays can be catastrophic for multiagent systems. However, most existing state-of-the-art multiagent trajectory planners assume perfect communication and therefore lack a strategy to rectify this issue in real-world environments. To address this challenge, we propose Robust MADER (RMADER), a decentralized, asynchronous multiagent trajectory planner robust to communication delay. RMADER ensures safety by introducing (1) a Delay Check step, (2) a two-step trajectory publication scheme, and (3) a novel trajectory-storing-and-checking approach. Our primary contributions include: proving recursive feasibility for collision-free trajectory generation in asynchronous decentralized trajectory-sharing, simulation benchmark studies, and hardware experiments with different network topologies and dynamic obstacles. We show that RMADER outperforms existing approaches by achieving a 100% success rate of collision-free trajectory generation, whereas the next best asynchronous decentralized method only achieves 83% success.

The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, GPT-4V(ision), and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that GPT-4V demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: \url{//github.com/PJLab-ADG/GPT4V-AD-Exploration}

Lane detection is a vital task for vehicles to navigate and localize their position on the road. To ensure reliable results, lane detection algorithms must have robust generalization performance in various road environments. However, despite the significant performance improvement of deep learning-based lane detection algorithms, their generalization performance in response to changes in road environments still falls short of expectations. In this paper, we present a novel framework for single-source domain generalization (SSDG) in lane detection. By decomposing data into lane structures and surroundings, we enhance diversity using High-Definition (HD) maps and generative models. Rather than expanding data volume, we strategically select a core subset of data, maximizing diversity and optimizing performance. Our extensive experiments demonstrate that our framework enhances the generalization performance of lane detection, comparable to the domain adaptation-based method.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

北京阿比特科技有限公司