亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The generalized singular value decomposition (GSVD) of a matrix pair $\{A, L\}$ with $A\in\mathbb{R}^{m\times n}$ and $L\in\mathbb{R}^{p\times n}$ generalizes the singular value decomposition (SVD) of a single matrix. In this paper, we provide a new understanding of GSVD from the viewpoint of SVD, based on which we propose a new iterative method for computing nontrivial GSVD components of a large-scale matrix pair. By introducing two linear operators $\mathcal{A}$ and $\mathcal{L}$ induced by $\{A, L\}$ between two finite-dimensional Hilbert spaces and applying the theory of singular value expansion (SVE) for linear compact operators, we show that the GSVD of $\{A, L\}$ is nothing but the SVEs of $\mathcal{A}$ and $\mathcal{L}$. This result characterizes completely the structure of GSVD for any matrix pair with the same number of columns. As a direct application of this result, we generalize the standard Golub-Kahan bidiagonalization (GKB) that is a basic routine for large-scale SVD computation such that the resulting generalized GKB (gGKB) process can be used to approximate nontrivial extreme GSVD components of $\{A, L\}$, which is named the gGKB\_GSVD algorithm. We use the GSVD of $\{A, L\}$ to study several basic properties of gGKB and also provide preliminary results about convergence and accuracy of gGKB\_GSVD for GSVD computation. Numerical experiments are presented to demonstrate the effectiveness of this method.

相關內容

A generalized unbalanced optimal transport distance ${\rm WB}_{\Lambda}$ on matrix-valued measures $\mathcal{M}(\Omega,\mathbb{S}_+^n)$ was defined in [arXiv:2011.05845] \`{a} la Benamou-Brenier, which extends the Kantorovich-Bures and the Wasserstein-Fisher-Rao distances. In this work, we investigate the convergence properties of the discrete transport problems associated with ${\rm WB}_{\Lambda}$. We first present a convergence framework for abstract discretization. Then, we propose a specific discretization scheme that aligns with this framework, under the assumption that the initial and final distributions are absolutely continuous with respect to the Lebesgue measure. Moreover, thanks to the static formulation, we show that such an assumption can be removed for the Wasserstein-Fisher-Rao distance.

Multi-index models -- functions which only depend on the covariates through a non-linear transformation of their projection on a subspace -- are a useful benchmark for investigating feature learning with neural networks. This paper examines the theoretical boundaries of learnability in this hypothesis class, focusing particularly on the minimum sample complexity required for weakly recovering their low-dimensional structure with first-order iterative algorithms, in the high-dimensional regime where the number of samples is $n=\alpha d$ is proportional to the covariate dimension $d$. Our findings unfold in three parts: (i) first, we identify under which conditions a \textit{trivial subspace} can be learned with a single step of a first-order algorithm for any $\alpha\!>\!0$; (ii) second, in the case where the trivial subspace is empty, we provide necessary and sufficient conditions for the existence of an {\it easy subspace} consisting of directions that can be learned only above a certain sample complexity $\alpha\!>\!\alpha_c$. The critical threshold $\alpha_{c}$ marks the presence of a computational phase transition, in the sense that no efficient iterative algorithm can succeed for $\alpha\!<\!\alpha_c$. In a limited but interesting set of really hard directions -- akin to the parity problem -- $\alpha_c$ is found to diverge. Finally, (iii) we demonstrate that interactions between different directions can result in an intricate hierarchical learning phenomenon, where some directions can be learned sequentially when coupled to easier ones. Our analytical approach is built on the optimality of approximate message-passing algorithms among first-order iterative methods, delineating the fundamental learnability limit across a broad spectrum of algorithms, including neural networks trained with gradient descent.

Given a composite null $ \mathcal P$ and composite alternative $ \mathcal Q$, when and how can we construct a p-value whose distribution is exactly uniform under the null, and stochastically smaller than uniform under the alternative? Similarly, when and how can we construct an e-value whose expectation exactly equals one under the null, but its expected logarithm under the alternative is positive? We answer these basic questions, and other related ones, when $ \mathcal P$ and $ \mathcal Q$ are convex polytopes (in the space of probability measures). We prove that such constructions are possible if and only if $ \mathcal Q$ does not intersect the span of $ \mathcal P$. If the p-value is allowed to be stochastically larger than uniform under $P\in \mathcal P$, and the e-value can have expectation at most one under $P\in \mathcal P$, then it is achievable whenever $ \mathcal P$ and $ \mathcal Q$ are disjoint. More generally, even when $ \mathcal P$ and $ \mathcal Q$ are not polytopes, we characterize the existence of a bounded nontrivial e-variable whose expectation exactly equals one under any $P \in \mathcal P$. The proofs utilize recently developed techniques in simultaneous optimal transport. A key role is played by coarsening the filtration: sometimes, no such p-value or e-value exists in the richest data filtration, but it does exist in some reduced filtration, and our work provides the first general characterization of this phenomenon. We also provide an iterative construction that explicitly constructs such processes, and under certain conditions it finds the one that grows fastest under a specific alternative $Q$. We discuss implications for the construction of composite nonnegative (super)martingales, and end with some conjectures and open problems.

We present a scalable machine learning (ML) force-field model for the adiabatic dynamics of cooperative Jahn-Teller (JT) systems. Large scale dynamical simulations of the JT model also shed light on the orbital ordering dynamics in colossal magnetoresistance manganites. The JT effect in these materials describes the distortion of local oxygen octahedra driven by a coupling to the orbital degrees of freedom of $e_g$ electrons. An effective electron-mediated interaction between the local JT modes leads to a structural transition and the emergence of long-range orbital order at low temperatures. Assuming the principle of locality, a deep-learning neural-network model is developed to accurately and efficiently predict the electron-induced forces that drive the dynamical evolution of JT phonons. A group-theoretical method is utilized to develop a descriptor that incorporates the combined orbital and lattice symmetry into the ML model. Large-scale Langevin dynamics simulations, enabled by the ML force-field models, are performed to investigate the coarsening dynamics of the composite JT distortion and orbital order after a thermal quench. The late-stage coarsening of orbital domains exhibits pronounced freezing behaviors which are likely related to the unusual morphology of the domain structures. Our work highlights a promising avenue for multi-scale dynamical modeling of correlated electron systems.

We introduce a simple natural deduction system for reasoning with judgments of the form "there exists a proof of $\varphi$" to explore the notion of judgmental existence following Martin-L\"{o}f's methodology of distinguishing between judgments and propositions. In this system, the existential judgment can be internalized into a modal notion of propositional existence that is closely related to truncation modality, a key tool for obtaining proof irrelevance, and lax modality. We provide a computational interpretation in the style of the Curry-Howard isomorphism for the existence modality and show that the corresponding system has some desirable properties such as strong normalization or subject reduction.

We prove lower bounds for the randomized approximation of the embedding $\ell_1^m \rightarrow \ell_\infty^m$ based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix $N \in \mathbb{R}^{n \times m}$. These lower bounds reflect the increasing difficulty of the problem for $m \to \infty$, namely, a term $\sqrt{\log m}$ in the complexity $n$. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity $n$ only exhibits a $(\log\log m)$-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order $n^{1/2} ( \log n)^{-1/2}$.

Given an unconditional diffusion model $\pi(x, y)$, using it to perform conditional simulation $\pi(x \mid y)$ is still largely an open question and is typically achieved by learning conditional drifts to the denoising SDE after the fact. In this work, we express conditional simulation as an inference problem on an augmented space corresponding to a partial SDE bridge. This perspective allows us to implement efficient and principled particle Gibbs and pseudo-marginal samplers marginally targeting the conditional distribution $\pi(x \mid y)$. Contrary to existing methodology, our methods do not introduce any additional approximation to the unconditional diffusion model aside from the Monte Carlo error. We showcase the benefits and drawbacks of our approach on a series of synthetic and real data examples.

Consider the linear ill-posed problems of the form $\sum_{i=1}^{b} A_i x_i =y$, where, for each $i$, $A_i$ is a bounded linear operator between two Hilbert spaces $X_i$ and ${\mathcal Y}$. When $b$ is huge, solving the problem by an iterative method using the full gradient at each iteration step is both time-consuming and memory insufficient. Although randomized block coordinate decent (RBCD) method has been shown to be an efficient method for well-posed large-scale optimization problems with a small amount of memory, there still lacks a convergence analysis on the RBCD method for solving ill-posed problems. In this paper, we investigate the convergence property of the RBCD method with noisy data under either {\it a priori} or {\it a posteriori} stopping rules. We prove that the RBCD method combined with an {\it a priori} stopping rule yields a sequence that converges weakly to a solution of the problem almost surely. We also consider the early stopping of the RBCD method and demonstrate that the discrepancy principle can terminate the iteration after finite many steps almost surely. For a class of ill-posed problems with special tensor product form, we obtain strong convergence results on the RBCD method. Furthermore, we consider incorporating the convex regularization terms into the RBCD method to enhance the detection of solution features. To illustrate the theory and the performance of the method, numerical simulations from the imaging modalities in computed tomography and compressive temporal imaging are reported.

We consider a wide class of generalized Radon transforms $\mathcal R$, which act in $\mathbb{R}^n$ for any $n\ge 2$ and integrate over submanifolds of any codimension $N$, $1\le N\le n-1$. Also, we allow for a fairly general reconstruction operator $\mathcal A$. The main requirement is that $\mathcal A$ be a Fourier integral operator with a phase function, which is linear in the phase variable. We consider the task of image reconstruction from discrete data $g_{j,k} = (\mathcal R f)_{j,k} + \eta_{j,k}$. We show that the reconstruction error $N_\epsilon^{\text{rec}}=\mathcal A \eta_{j,k}$ satisfies $N^{\text{rec}}(\check x;x_0)=\lim_{\epsilon\to0}N_\epsilon^{\text{rec}}(x_0+\epsilon\check x)$, $\check x\in D$. Here $x_0$ is a fixed point, $D\subset\mathbb{R}^n$ is a bounded domain, and $\eta_{j,k}$ are independent, but not necessarily identically distributed, random variables. $N^{\text{rec}}$ and $N_\epsilon^{\text{rec}}$ are viewed as continuous random functions of the argument $\check x$ (random fields), and the limit is understood in the sense of probability distributions. Under some conditions on the first three moments of $\eta_{j,k}$ (and some other not very restrictive conditions on $x_0$ and $\mathcal A$), we prove that $N^{\text{rec}}$ is a zero mean Gaussian random field and explicitly compute its covariance. We also present a numerical experiment with a cone beam transform in $\mathbb{R}^3$, which shows an excellent match between theoretical predictions and simulated reconstructions.

Optimal transport and the Wasserstein distance $\mathcal{W}_p$ have recently seen a number of applications in the fields of statistics, machine learning, data science, and the physical sciences. These applications are however severely restricted by the curse of dimensionality, meaning that the number of data points needed to estimate these problems accurately increases exponentially in the dimension. To alleviate this problem, a number of variants of $\mathcal{W}_p$ have been introduced. We focus here on one of these variants, namely the max-sliced Wasserstein metric $\overline{\mathcal{W}}_p$. This metric reduces the high-dimensional minimization problem given by $\mathcal{W}_p$ to a maximum of one-dimensional measurements in an effort to overcome the curse of dimensionality. In this note we derive concentration results and upper bounds on the expectation of $\overline{\mathcal{W}}_p$ between the true and empirical measure on unbounded reproducing kernel Hilbert spaces. We show that, under quite generic assumptions, probability measures concentrate uniformly fast in one-dimensional subspaces, at (nearly) parametric rates. Our results rely on an improvement of currently known bounds for $\overline{\mathcal{W}}_p$ in the finite-dimensional case.

北京阿比特科技有限公司