In this work we propose a new algorithm for solving high-dimensional backward stochastic differential equations (BSDEs). Based on the general theta-discretization for the time-integrands, we show how to efficiently use eXtreme Gradient Boosting (XGBoost) regression to approximate the resulting conditional expectations in a quite high dimension. Numerical results illustrate the efficiency and accuracy of our proposed algorithms for solving very high-dimensional (up to $10000$ dimensions) nonlinear BSDEs.
We aim at the development and analysis of the numerical schemes for approximately solving the backward diffusion-wave problem, which involves a fractional derivative in time with order $\alpha\in(1,2)$. From terminal observations at two time levels, i.e., $u(T_1)$ and $u(T_2)$, we simultaneously recover two initial data $u(0)$ and $u_t(0)$ and hence the solution $u(t)$ for all $t > 0$. First of all, existence, uniqueness and Lipschitz stability of the backward diffusion-wave problem were established under some conditions about $T_1$ and $T_2$. Moreover, for noisy data, we propose a quasi-boundary value scheme to regularize the "mildly" ill-posed problem, and show the convergence of the regularized solution. Next, to numerically solve the regularized problem, a fully discrete scheme is proposed by applying finite element method in space and convolution quadrature in time. We establish error bounds of the discrete solution in both cases of smooth and nonsmooth data. The error estimate is very useful in practice since it indicates the way to choose discretization parameters and regularization parameter, according to the noise level. The theoretical results are supported by numerical experiments.
This paper proposes and analyzes an ultra-weak local discontinuous Galerkin scheme for one-dimensional nonlinear biharmonic Schr\"{o}dinger equations. We develop the paradigm of the local discontinuous Galerkin method by introducing the second-order spatial derivative as an auxiliary variable instead of the conventional first-order derivative. The proposed semi-discrete scheme preserves a few physically relevant properties such as the conservation of mass and the conservation of Hamiltonian accompanied by its stability for the targeted nonlinear biharmonic Schr\"{o}dinger equations. We also derive optimal $L^2$-error estimates of the scheme that measure both the solution and the auxiliary variable. Several numerical studies demonstrate and support our theoretical findings.
In this work, we study an inverse problem of recovering a space-time dependent diffusion coefficient in the subdiffusion model from the distributed observation, where the mathematical model involves a Djrbashian-Caputo fractional derivative of order $\alpha\in(0,1)$ in time. The main technical challenges of both theoretical and numerical analysis lie in the limited smoothing properties due to the fractional differential operator and the high degree of nonlinearity of the forward map from the unknown diffusion coefficient to the distributed observation. Theoretically, we establish two conditional stability results using a novel test function, which leads to a stability bound in $L^2(0,T;L^2(\Omega))$ under a suitable positivity condition. The positivity condition is verified for a large class of problem data. Numerically, we develop a rigorous procedure for the recovery of the diffusion coefficient based on a regularized least-squares formulation, which is then discretized by the standard Galerkin method with continuous piecewise linear elements in space and backward Euler convolution quadrature in time. We provide a complete error analysis of the fully discrete formulation, by combining several new error estimates for the direct problem (optimal in terms of data regularity), a discrete version of fractional maximal $L^p$ regularity, and a nonstandard energy argument. Under the positivity condition, we obtain a standard $L^2(0,T; L^2(\Omega))$ error estimate consistent with the conditional stability. Further, we illustrate the analysis with some numerical examples.
This paper considers the initial value problem of general nonlinear stochastic fractional integro-differential equations with weakly singular kernels. Our effort is devoted to establishing some fine estimates to include all the cases of Abel-type singular kernels. Firstly, the existence, uniqueness and continuous dependence on the initial value of the true solution under local Lipschitz condition and linear growth condition are derived in detail. Secondly, the Euler--Maruyama method is developed for solving numerically the equation, and then its strong convergence is proven under the same conditions as the well-posedness. Moreover, we obtain the accurate convergence rate of this method under global Lipschitz condition and linear growth condition. In particular, the Euler--Maruyama method can reach strong first-order superconvergence when $\alpha = 1$. Finally, several numerical tests are reported for verification of the theoretical findings.
Stochastic optimal principle leads to the resolution of a partial differential equation (PDE), namely the Hamilton-Jacobi-Bellman (HJB) equation. In general, this equation cannot be solved analytically, thus numerical algorithms are the only tools to provide accurate approximations. The aims of this paper is to introduce a novel fitted finite volume method to solve high dimensional degenerated HJB equation from stochastic optimal control problems in high dimension ($ n\geq 3$). The challenge here is due to the nature of our HJB equation which is a degenerated second-order partial differential equation coupled with an optimization problem. For such problems, standard scheme such as finite difference method losses its monotonicity and therefore the convergence toward the viscosity solution may not be guarantee. We discretize the HJB equation using the fitted finite volume method, well known to tackle degenerated PDEs, while the time discretisation is performed using the Implicit Euler scheme. We show that matrices resulting from spatial discretization and temporal discretization are M--matrices. Numerical results in finance demonstrating the accuracy of the proposed numerical method comparing to the standard finite difference method are provided.
In this paper, we propose an infinite-dimensional version of the Stein variational gradient descent (iSVGD) method for solving Bayesian inverse problems. The method can generate approximate samples from posteriors efficiently. Based on the concepts of operator-valued kernels and function-valued reproducing kernel Hilbert spaces, a rigorous definition is given for the infinite-dimensional objects, e.g., the Stein operator, which are proved to be the limit of finite-dimensional ones. Moreover, a more efficient iSVGD with preconditioning operators is constructed by generalizing the change of variables formula and introducing a regularity parameter. The proposed algorithms are applied to an inverse problem of the steady state Darcy flow equation. Numerical results confirm our theoretical findings and demonstrate the potential applications of the proposed approach in the posterior sampling of large-scale nonlinear statistical inverse problems.
In high-dimensional data analysis, bi-level sparsity is often assumed when covariates function group-wisely and sparsity can appear either at the group level or within certain groups. In such cases, an ideal model should be able to encourage the bi-level variable selection consistently. Bi-level variable selection has become even more challenging when data have heavy-tailed distribution or outliers exist in random errors and covariates. In this paper, we study a framework of high-dimensional M-estimation for bi-level variable selection. This framework encourages bi-level sparsity through a computationally efficient two-stage procedure. In theory, we provide sufficient conditions under which our two-stage penalized M-estimator possesses simultaneous local estimation consistency and the bi-level variable selection consistency if certain nonconvex penalty functions are used at the group level. Both our simulation studies and real data analysis demonstrate satisfactory finite sample performance of the proposed estimators under different irregular settings.
In this paper, we present an interior penalty discontinuous Galerkin finite element scheme for solving diffusion problems with strong anisotropy arising in magnetized plasmas for fusion applications. We demonstrate the accuracy produced by the high-order scheme and develop an efficient preconditioning technique to solve the corresponding linear system, which is robust to the mesh size and anisotropy of the problem. Several numerical tests are provided to validate the accuracy and efficiency of the proposed algorithm.
Dimension reduction for high-dimensional compositional data plays an important role in many fields, where the principal component analysis of the basis covariance matrix is of scientific interest. In practice, however, the basis variables are latent and rarely observed, and standard techniques of principal component analysis are inadequate for compositional data because of the simplex constraint. To address the challenging problem, we relate the principal subspace of the centered log-ratio compositional covariance to that of the basis covariance, and prove that the latter is approximately identifiable with the diverging dimensionality under some subspace sparsity assumption. The interesting blessing-of-dimensionality phenomenon enables us to propose the principal subspace estimation methods by using the sample centered log-ratio covariance. We also derive nonasymptotic error bounds for the subspace estimators, which exhibits a tradeoff between identification and estimation. Moreover, we develop efficient proximal alternating direction method of multipliers algorithms to solve the nonconvex and nonsmooth optimization problems. Simulation results demonstrate that the proposed methods perform as well as the oracle methods with known basis. Their usefulness is illustrated through an analysis of word usage pattern for statisticians.
We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.