A bound uniform over various loss-classes is given for data generated by stationary and phi-mixing processes, where the mixing time (the time needed to obtain approximate independence) enters the sample complexity only in an additive way. For slowly mixing processes this can be a considerable advantage over results with multiplicative dependence on the mixing time. The admissible loss-classes include functions with prescribed Lipschitz norms or smoothness parameters. The bound can also be applied to be uniform over unconstrained loss-classes, where it depends on local Lipschitz properties of the function on the sample path.
Optimal Transport has sparked vivid interest in recent years, in particular thanks to the Wasserstein distance, which provides a geometrically sensible and intuitive way of comparing probability measures. For computational reasons, the Sliced Wasserstein (SW) distance was introduced as an alternative to the Wasserstein distance, and has seen uses for training generative Neural Networks (NNs). While convergence of Stochastic Gradient Descent (SGD) has been observed practically in such a setting, there is to our knowledge no theoretical guarantee for this observation. Leveraging recent works on convergence of SGD on non-smooth and non-convex functions by Bianchi et al. (2022), we aim to bridge that knowledge gap, and provide a realistic context under which fixed-step SGD trajectories for the SW loss on NN parameters converge. More precisely, we show that the trajectories approach the set of (sub)-gradient flow equations as the step decreases. Under stricter assumptions, we show a much stronger convergence result for noised and projected SGD schemes, namely that the long-run limits of the trajectories approach a set of generalised critical points of the loss function.
Let ${\cal G}$ be a minor-closed graph class and let $G$ be an $n$-vertex graph. We say that $G$ is a $k$-apex of ${\cal G}$ if $G$ contains a set $S$ of at most $k$ vertices such that $G\setminus S$ belongs to ${\cal G}$. Our first result is an algorithm that decides whether $G$ is a $k$-apex of ${\cal G}$ in time $2^{{\sf poly}(k)}\cdot n^2$, where ${\sf poly}$ is a polynomial function depending on ${\cal G}$. This algorithm improves the previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020], whose running time was $2^{{\sf poly}(k)}\cdot n^3$. The elimination distance of $G$ to ${\cal G}$, denoted by ${\sf ed}_{\cal G}(G)$, is the minimum number of rounds required to reduce each connected component of $G$ to a graph in ${\cal G}$ by removing one vertex from each connected component in each round. Bulian and Dawar [Algorithmica 2017] provided an FPT-algorithm, with parameter $k$, to decide whether ${\sf ed}_{\cal G}(G)\leq k$. However, its dependence on $k$ is not explicit. We extend the techniques used in the first algorithm to decide whether ${\sf ed}_{\cal G}(G)\leq k$ in time $2^{2^{2^{{\sf poly}(k)}}}\cdot n^2$. This is the first algorithm for this problem with an explicit parametric dependence in $k$. In the special case where ${\cal G}$ excludes some apex-graph as a minor, we give two alternative algorithms, running in time $2^{2^{{\cal O}(k^2\log k)}}\cdot n^2$ and $2^{{\sf poly}(k)}\cdot n^3$ respectively, where $c$ and ${\sf poly}$ depend on ${\cal G}$. As a stepping stone for these algorithms, we provide an algorithm that decides whether ${\sf ed}_{\cal G}(G)\leq k$ in time $2^{{\cal O}({\sf tw}\cdot k+{\sf tw}\log{\sf tw})}\cdot n$, where ${\sf tw}$ is the treewidth of $G$. Finally, we provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of graphs ${\cal E}_k({\cal G})=\{G\mid{\sf ed}_{\cal G}(G)\leq k\}$.
The Black-Scholes (B-S) equation has been recently extended as a kind of tempered time-fractional B-S equations, which becomes an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B-S model. To achieve high-order accuracy in space and overcome the weak initial singularity of exact solution, we combine the compact difference operator with L1-type approximation under nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in the tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditionally stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.
Relative localization is crucial for multi-robot systems to perform cooperative tasks, especially in GPS-denied environments. Current techniques for multi-robot relative localization rely on expensive or short-range sensors such as cameras and LIDARs. As a result, these algorithms face challenges such as high computational complexity, dependencies on well-structured environments, etc. To overcome these limitations, we propose a new distributed approach to perform relative localization using a Gaussian Processes map of the Radio Signal Strength Indicator (RSSI) values from a single wireless Access Point (AP) to which the robots are connected. Our approach, Gaussian Processes-based Relative Localization (GPRL), combines two pillars. First, the robots locate the AP w.r.t. their local reference frames using novel hierarchical inferencing that significantly reduces computational complexity. Secondly, the robots obtain relative positions of neighbor robots with an AP-oriented vector transformation. The approach readily applies to resource-constrained devices and relies only on the ubiquitously-available RSSI measurement. We extensively validate the performance of the two pillars of the proposed GRPL in Robotarium simulations. We also demonstrate the applicability of GPRL through a multi-robot rendezvous task with a team of three real-world robots. The results demonstrate that GPRL outperformed state-of-the-art approaches regarding accuracy, computation, and real-time performance.
This paper presents a novel approach called the boundary integrated neural networks (BINNs) for analyzing acoustic radiation and scattering. The method introduces fundamental solutions of the time-harmonic wave equation to encode the boundary integral equations (BIEs) within the neural networks, replacing the conventional use of the governing equation in physics-informed neural networks (PINNs). This approach offers several advantages. Firstly, the input data for the neural networks in the BINNs only require the coordinates of "boundary" collocation points, making it highly suitable for analyzing acoustic fields in unbounded domains. Secondly, the loss function of the BINNs is not a composite form, and has a fast convergence. Thirdly, the BINNs achieve comparable precision to the PINNs using fewer collocation points and hidden layers/neurons. Finally, the semi-analytic characteristic of the BIEs contributes to the higher precision of the BINNs. Numerical examples are presented to demonstrate the performance of the proposed method.
We study Glauber dynamics for sampling from discrete distributions $\mu$ on the hypercube $\{\pm 1\}^n$. Recently, techniques based on spectral independence have successfully yielded optimal $O(n)$ relaxation times for a host of different distributions $\mu$. We show that spectral independence is universal: a relaxation time of $O(n)$ implies spectral independence. We then study a notion of tractability for $\mu$, defined in terms of smoothness of the multilinear extension of its Hamiltonian -- $\log \mu$ -- over $[-1,+1]^n$. We show that Glauber dynamics has relaxation time $O(n)$ for such $\mu$, and using the universality of spectral independence, we conclude that these distributions are also fractionally log-concave and consequently satisfy modified log-Sobolev inequalities. We sharpen our estimates and obtain approximate tensorization of entropy and the optimal $\widetilde{O}(n)$ mixing time for random Hamiltonians, i.e. the classically studied mixed $p$-spin model at sufficiently high temperature. These results have significant downstream consequences for concentration of measure, statistical testing, and learning.
We consider the problem of learning from data corrupted by underrepresentation bias, where positive examples are filtered from the data at different, unknown rates for a fixed number of sensitive groups. We show that with a small amount of unbiased data, we can efficiently estimate the group-wise drop-out parameters, even in settings where intersectional group membership makes learning each intersectional rate computationally infeasible. Using this estimate for the group-wise drop-out rate, we construct a re-weighting scheme that allows us to approximate the loss of any hypothesis on the true distribution, even if we only observe the empirical error on a biased sample. Finally, we present an algorithm encapsulating this learning and re-weighting process, and we provide strong PAC-style guarantees that, with high probability, our estimate of the risk of the hypothesis over the true distribution will be arbitrarily close to the true risk.
On-device training is essential for user personalisation and privacy. With the pervasiveness of IoT devices and microcontroller units (MCU), this task becomes more challenging due to the constrained memory and compute resources, and the limited availability of labelled user data. Nonetheless, prior works neglect the data scarcity issue, require excessively long training time (e.g. a few hours), or induce substantial accuracy loss ($\geq$10\%). We propose TinyTrain, an on-device training approach that drastically reduces training time by selectively updating parts of the model and explicitly coping with data scarcity. TinyTrain introduces a task-adaptive sparse-update method that dynamically selects the layer/channel based on a multi-objective criterion that jointly captures user data, the memory, and the compute capabilities of the target device, leading to high accuracy on unseen tasks with reduced computation and memory footprint. TinyTrain outperforms vanilla fine-tuning of the entire network by 3.6-5.0\% in accuracy, while reducing the backward-pass memory and computation cost by up to 2,286$\times$ and 7.68$\times$, respectively. Targeting broadly used real-world edge devices, TinyTrain achieves 9.5$\times$ faster and 3.5$\times$ more energy-efficient training over status-quo approaches, and 2.8$\times$ smaller memory footprint than SOTA approaches, while remaining within the 1 MB memory envelope of MCU-grade platforms.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.