亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article investigates the approximation quality achievable for biobjective minimization problems with respect to the Pareto cone by solutions that are (approximately) optimal with respect to larger ordering cones. When simultaneously considering $\alpha$-approximations for all closed convex ordering cones of a fixed inner angle $\gamma \in [\frac \pi 2, \pi]$, an approximation guarantee between $\alpha$ and $2 \alpha$ is achieved, which depends continuously on $\gamma$. The analysis is best-possible for any inner angle and it generalizes and unifies the known results that the set of supported solutions is a 2-approximation and that the efficient set itself is a 1-approximation. Moreover, it is shown that, for maximization problems, no approximation guarantee is achievable by considering larger ordering cones in the described fashion, which again generalizes a known result about the set of supported solutions.

相關內容

Given a graph $G$ of degree $k$ over $n$ vertices, we consider the problem of computing a near maximum cut or a near minimum bisection in polynomial time. For graphs of girth $L$, we develop a local message passing algorithm whose complexity is $O(nkL)$, and that achieves near optimal cut values among all $L$-local algorithms. Focusing on max-cut, the algorithm constructs a cut of value $nk/4+ n\mathsf{P}_\star\sqrt{k/4}+\mathsf{err}(n,k,L)$, where $\mathsf{P}_\star\approx 0.763166$ is the value of the Parisi formula from spin glass theory, and $\mathsf{err}(n,k,L)=o_n(n)+no_k(\sqrt{k})+n \sqrt{k} o_L(1)$ (subscripts indicate the asymptotic variables). Our result generalizes to locally treelike graphs, i.e., graphs whose girth becomes $L$ after removing a small fraction of vertices. Earlier work established that, for random $k$-regular graphs, the typical max-cut value is $nk/4+ n\mathsf{P}_\star\sqrt{k/4}+o_n(n)+no_k(\sqrt{k})$. Therefore our algorithm is nearly optimal on such graphs. An immediate corollary of this result is that random regular graphs have nearly minimum max-cut, and nearly maximum min-bisection among all regular locally treelike graphs. This can be viewed as a combinatorial version of the near-Ramanujan property of random regular graphs.

Some properties of generalized convexity for sets and for functions are identified in case of the reliability polynomials of two dual minimal networks. A method of approximating the reliability polynomials of two dual minimal network is developed based on their mutual complementarity properties. The approximating objects are from the class of quadratic spline functions, constructed based both on interpolation conditions and on shape knowledge. It is proved that the approximant objects preserve the shape properties of the exact reliability polynomials. Numerical examples and simulations show the performance of the algorithm, both in terms of low complexity, small error and shape preserving. Possibilities of increasing the accuracy of approximation are discussed.

Optimal transport (OT) naturally arises in a wide range of machine learning applications but may often become the computational bottleneck. Recently, one line of works propose to solve OT approximately by searching the \emph{transport plan} in a low-rank subspace. However, the optimal transport plan is often not low-rank, which tends to yield large approximation errors. For example, when Monge's \emph{transport map} exists, the transport plan is full rank. This paper concerns the computation of the OT distance with adequate accuracy and efficiency. A novel approximation for OT is proposed, in which the transport plan can be decomposed into the sum of a low-rank matrix and a sparse one. We theoretically analyze the approximation error. An augmented Lagrangian method is then designed to efficiently calculate the transport plan.

We consider the energy complexity of the leader election problem in the single-hop radio network model, where each device has a unique identifier in $\{1, 2, \ldots, N\}$. Energy is a scarce resource for small battery-powered devices. For such devices, most of the energy is often spent on communication, not on computation. To approximate the actual energy cost, the energy complexity of an algorithm is defined as the maximum over all devices of the number of time slots where the device transmits or listens. Much progress has been made in understanding the energy complexity of leader election in radio networks, but very little is known about the trade-off between time and energy. $\textbf{Time-energy trade-off:}$ For any $k \geq \log \log N$, we show that a leader among at most $n$ devices can be elected deterministically in $O(k \cdot n^{1+\epsilon}) + O(k \cdot N^{1/k})$ time and $O(k)$ energy if each device can simultaneously transmit and listen, where $\epsilon > 0$ is any small constant. This improves upon the previous $O(N)$-time $O(\log \log N)$-energy algorithm by Chang et al. [STOC 2017]. We provide lower bounds to show that the time-energy trade-off of our algorithm is near-optimal. $\textbf{Dense instances:}$ For the dense instances where the number of devices is $n = \Theta(N)$, we design a deterministic leader election algorithm using only $O(1)$ energy. This improves upon the $O(\log^* N)$-energy algorithm by Jurdzi\'{n}ski et al. [PODC 2002] and the $O(\alpha(N))$-energy algorithm by Chang et al. [STOC 2017]. More specifically, we show that the optimal deterministic energy complexity of leader election is $\Theta\left(\max\left\{1, \log \frac{N}{n}\right\}\right)$ if the devices cannot simultaneously transmit and listen, and it is $\Theta\left(\max\left\{1, \log \log \frac{N}{n}\right\}\right)$ if they can.

The fundamental sparsest cut problem takes as input a graph $G$ together with the edge costs and demands, and seeks a cut that minimizes the ratio between the costs and demands across the cuts. For $n$-node graphs~$G$ of treewidth~$k$, \chlamtac, Krauthgamer, and Raghavendra (APPROX 2010) presented an algorithm that yields a factor-$2^{2^k}$ approximation in time $2^{O(k)} \cdot \operatorname{poly}(n)$. Later, Gupta, Talwar and Witmer (STOC 2013) showed how to obtain a $2$-approximation algorithm with a blown-up run time of $n^{O(k)}$. An intriguing open question is whether one can simultaneously achieve the best out of the aforementioned results, that is, a factor-$2$ approximation in time $2^{O(k)} \cdot \operatorname{poly}(n)$. In this paper, we make significant progress towards this goal, via the following results: (i) A factor-$O(k^2)$ approximation that runs in time $2^{O(k)} \cdot \operatorname{poly}(n)$, directly improving the work of Chlamt\'a\v{c} et al. while keeping the run time single-exponential in $k$. (ii) For any $\varepsilon>0$, a factor-$O(1/\varepsilon^2)$ approximation whose run time is $2^{O(k^{1+\varepsilon}/\varepsilon)} \cdot \operatorname{poly}(n)$, implying a constant-factor approximation whose run time is nearly single-exponential in $k$ and a factor-$O(\log^2 k)$ approximation in time $k^{O(k)} \cdot \operatorname{poly}(n)$. Key to these results is a new measure of a tree decomposition that we call combinatorial diameter, which may be of independent interest.

Flexible Transmitter Network (FTNet) is a recently proposed bio-plausible neural network and has achieved competitive performance with the state-of-the-art models when handling temporal-spatial data. However, there remains an open problem about the theoretical understanding of FTNet. This work investigates the theoretical properties of one-hidden-layer FTNet from the perspectives of approximation and local minima. Under mild assumptions, we show that: i) FTNet is a universal approximator; ii) the approximation complexity of FTNet can be exponentially smaller than those of real-valued neural networks with feedforward/recurrent architectures and is of the same order in the worst case; iii) any local minimum of FTNet is the global minimum, which suggests that it is possible for local search algorithms to converge to the global minimum. Our theoretical results indicate that FTNet can efficiently express target functions and has no concern about local minima, which complements the theoretical blank of FTNet and exhibits the possibility for ameliorating the FTNet.

Advances in information technology have led to extremely large datasets that are often kept in different storage centers. Existing statistical methods must be adapted to overcome the resulting computational obstacles while retaining statistical validity and efficiency. Split-and-conquer approaches have been applied in many areas, including quantile processes, regression analysis, principal eigenspaces, and exponential families. We study split-and-conquer approaches for the distributed learning of finite Gaussian mixtures. We recommend a reduction strategy and develop an effective MM algorithm. The new estimator is shown to be consistent and retains root-n consistency under some general conditions. Experiments based on simulated and real-world data show that the proposed split-and-conquer approach has comparable statistical performance with the global estimator based on the full dataset, if the latter is feasible. It can even slightly outperform the global estimator if the model assumption does not match the real-world data. It also has better statistical and computational performance than some existing methods.

For a constant $d$, the $d$-Path Vertex Cover problem ($d$-PVC) is as follows: Given an undirected graph and an integer $k$, find a subset of at most $k$ vertices of the graph, such that their deletion results in a graph not containing a path on $d$ vertices as a subgraph. We develop a framework to automatically generate parameterized branching algorithms for the problem and obtain algorithms outperforming those previously known for $3 \le d \le 8$. E.g., we show that $5$-PVC can be solved in $O(2.7^k\cdot n^{O(1)})$ time.

Finding approximate Nash equilibria in zero-sum imperfect-information games is challenging when the number of information states is large. Policy Space Response Oracles (PSRO) is a deep reinforcement learning algorithm grounded in game theory that is guaranteed to converge to an approximate Nash equilibrium. However, PSRO requires training a reinforcement learning policy at each iteration, making it too slow for large games. We show through counterexamples and experiments that DCH and Rectified PSRO, two existing approaches to scaling up PSRO, fail to converge even in small games. We introduce Pipeline PSRO (P2SRO), the first scalable general method for finding approximate Nash equilibria in large zero-sum imperfect-information games. P2SRO is able to parallelize PSRO with convergence guarantees by maintaining a hierarchical pipeline of reinforcement learning workers, each training against the policies generated by lower levels in the hierarchy. We show that unlike existing methods, P2SRO converges to an approximate Nash equilibrium, and does so faster as the number of parallel workers increases, across a variety of imperfect information games. We also introduce an open-source environment for Barrage Stratego, a variant of Stratego with an approximate game tree complexity of $10^{50}$. P2SRO is able to achieve state-of-the-art performance on Barrage Stratego and beats all existing bots.

In this paper, from a theoretical perspective, we study how powerful graph neural networks (GNNs) can be for learning approximation algorithms for combinatorial problems. To this end, we first establish a new class of GNNs that can solve strictly a wider variety of problems than existing GNNs. Then, we bridge the gap between GNN theory and the theory of distributed local algorithms to theoretically demonstrate that the most powerful GNN can learn approximation algorithms for the minimum dominating set problem and the minimum vertex cover problem with some approximation ratios and that no GNN can perform better than with these ratios. This paper is the first to elucidate approximation ratios of GNNs for combinatorial problems. Furthermore, we prove that adding coloring or weak-coloring to each node feature improves these approximation ratios. This indicates that preprocessing and feature engineering theoretically strengthen model capabilities.

北京阿比特科技有限公司