亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study regression discontinuity designs with the use of additional covariates for estimation of the average treatment effect. We provide a detailed proof of asymptotic normality of the covariate-adjusted estimator under minimal assumptions, which may serve as an accessible text to the mathematics behind regression discontinuity with covariates. In addition, this proof carries at least three benefits. First of all, it allows to draw straightforward consequences concerning the impact of the covariates on the bias and variance of the estimator. In fact, we can provide conditions under which the influence of the covariates on the bias vanishes. Moreover, we show that the variance in the covariate-adjusted case is never worse than in the case of the baseline estimator under a very general invertibility condition. Finally, our approach does not require the existence of potential outcomes, allowing for a sensitivity analysis in case confounding cannot be ruled out, e.g., by a manipulated forcing variable.

相關內容

We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models. Our code is available at: //github.com/tianyu139/meaning-as-trajectories

We consider a panel data analysis to examine the heterogeneity in treatment effects with respect to a pre-treatment covariate of interest in the staggered difference-in-differences setting of Callaway and Sant'Anna (2021). Under standard identification conditions, a doubly robust estimand conditional on the covariate identifies the group-time conditional average treatment effect given the covariate. Focusing on the case of a continuous covariate, we propose a three-step estimation procedure based on nonparametric local polynomial regressions and parametric estimation methods. Using uniformly valid distributional approximation results for empirical processes and multiplier bootstrapping, we develop doubly robust inference methods to construct uniform confidence bands for the group-time conditional average treatment effect function. The accompanying R package didhetero allows for easy implementation of the proposed methods.

Deep reinforcement learning (DRL) provides a promising way for intelligent agents (e.g., autonomous vehicles) to learn to navigate complex scenarios. However, DRL with neural networks as function approximators is typically considered a black box with little explainability and often suffers from suboptimal performance, especially for autonomous navigation in highly interactive multi-agent environments. To address these issues, we propose three auxiliary tasks with spatio-temporal relational reasoning and integrate them into the standard DRL framework, which improves the decision making performance and provides explainable intermediate indicators. We propose to explicitly infer the internal states (i.e., traits and intentions) of surrounding agents (e.g., human drivers) as well as to predict their future trajectories in the situations with and without the ego agent through counterfactual reasoning. These auxiliary tasks provide additional supervision signals to infer the behavior patterns of other interactive agents. Multiple variants of framework integration strategies are compared. We also employ a spatio-temporal graph neural network to encode relations between dynamic entities, which enhances both internal state inference and decision making of the ego agent. Moreover, we propose an interactivity estimation mechanism based on the difference between predicted trajectories in these two situations, which indicates the degree of influence of the ego agent on other agents. To validate the proposed method, we design an intersection driving simulator based on the Intelligent Intersection Driver Model (IIDM) that simulates vehicles and pedestrians. Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics and provides explainable intermediate indicators (i.e., internal states, and interactivity scores) for decision making.

We introduce a new powerful scan statistic and an associated test for detecting the presence and pinpointing the location of a change point within the distribution of a data sequence where the data elements take values in a general separable metric space $(\Omega, d)$. These change points mark abrupt shifts in the distribution of the data sequence. Our method hinges on distance profiles, where the distance profile of an element $\omega \in \Omega$ is the distribution of distances from $\omega$ as dictated by the data. Our approach is fully non-parametric and universally applicable to diverse data types, including distributional and network data, as long as distances between the data objects are available. From a practicable point of view, it is nearly tuning parameter-free, except for the specification of cut-off intervals near the endpoints where change points are assumed not to occur. Our theoretical results include a precise characterization of the asymptotic distribution of the test statistic under the null hypothesis of no change points and rigorous guarantees on the consistency of the test in the presence of change points under contiguous alternatives, as well as for the consistency of the estimated change point location. Through comprehensive simulation studies encompassing multivariate data, bivariate distributional data and sequences of graph Laplacians, we demonstrate the effectiveness of our approach in both change point detection power and estimating the location of the change point. We apply our method to real datasets, including U.S. electricity generation compositions and Bluetooth proximity networks, underscoring its practical relevance.

We propose a diarization system, that estimates "who spoke when" based on spatial information, to be used as a front-end of a meeting transcription system running on the signals gathered from an acoustic sensor network (ASN). Although the spatial distribution of the microphones is advantageous, exploiting the spatial diversity for diarization and signal enhancement is challenging, because the microphones' positions are typically unknown, and the recorded signals are initially unsynchronized in general. Here, we approach these issues by first blindly synchronizing the signals and then estimating time differences of arrival (TDOAs). The TDOA information is exploited to estimate the speakers' activity, even in the presence of multiple speakers being simultaneously active. This speaker activity information serves as a guide for a spatial mixture model, on which basis the individual speaker's signals are extracted via beamforming. Finally, the extracted signals are forwarded to a speech recognizer. Additionally, a novel initialization scheme for spatial mixture models based on the TDOA estimates is proposed. Experiments conducted on real recordings from the LibriWASN data set have shown that our proposed system is advantageous compared to a system using a spatial mixture model, which does not make use of external diarization information.

Lexical ambiguity is a challenging and pervasive problem in machine translation (\mt). We introduce a simple and scalable approach to resolve translation ambiguity by incorporating a small amount of extra-sentential context in neural \mt. Our approach requires no sense annotation and no change to standard model architectures. Since actual document context is not available for the vast majority of \mt training data, we collect related sentences for each input to construct pseudo-documents. Salient words from pseudo-documents are then encoded as a prefix to each source sentence to condition the generation of the translation. To evaluate, we release \docmucow, a challenge set for translation disambiguation based on the English-German \mucow \cite{raganato-etal-2020-evaluation} augmented with document IDs. Extensive experiments show that our method translates ambiguous source words better than strong sentence-level baselines and comparable document-level baselines while reducing training costs.

Although gradient descent with momentum is widely used in modern deep learning, a concrete understanding of its effects on the training trajectory still remains elusive. In this work, we empirically show that momentum gradient descent with a large learning rate and learning rate warmup displays large catapults, driving the iterates towards flatter minima than those found by gradient descent. We then provide empirical evidence and theoretical intuition that the large catapult is caused by momentum "amplifying" the self-stabilization effect (Damian et al., 2023).

In this study, a smoothed particle hydrodynamics (SPH) model that applies a segment-based boundary treatment is used to simulate natural convection. In a natural convection simulated using an SPH model, the wall boundary treatment is a major issue because accurate heat transfer from boundaries should be calculated. The boundary particle method, which models the boundary by placing multiple layers of particles on and behind the wall boundary, is the most widely used boundary treatment method. Although this method can impose accurate boundary conditions, boundary modeling for complex shapes is challenging and requires excessive computational costs depending on the boundary shape. In this study, we utilize a segment-based boundary treatment method to model the wall boundary and apply this method to the energy conservation equation for the wall heat transfer model. The proposed method solves the problems arising from the use of boundary particles and simultaneously provides accurate heat transfer calculation results for the wall. In various numerical examples, the proposed method is verified through a comparison with available experimental results, SPH results using the boundary particle method, and finite volume method (FVM) results.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

北京阿比特科技有限公司