亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The present paper mainly studies limits and constructions of insertion and deletion (insdel for short) codes. The paper can be divided into two parts. The first part focuses on various bounds, while the second part concentrates on constructions of insdel codes. Although the insdel-metric Singleton bound has been derived before, it is still unknown if there are any nontrivial codes achieving this bound. Our first result shows that any nontrivial insdel codes do not achieve the insdel-metric Singleton bound. The second bound shows that every $[n,k]$ Reed-Solomon code has insdel distance upper bounded by $2n-4k+4$ and it is known in literature that an $[n,k]$ Reed-Solomon code can have insdel distance $2n-4k+4$ as long as the field size is sufficiently large. The third bound shows a trade-off between insdel distance and code alphabet size for codes achieving the Hamming-metric Singleton bound. In the second part of the paper, we first provide a non-explicit construction of nonlinear codes that can approach the insdel-metric Singleton bound arbitrarily when the code alphabet size is sufficiently large. The second construction gives two-dimensional Reed-Solomon codes of length $n$ and insdel distance $2n-4$ with field size $q=O(n^5)$.

相關內容

Maximizing a monotone submodular function is a fundamental task in machine learning. In this paper, we study the deletion robust version of the problem under the classic matroids constraint. Here the goal is to extract a small size summary of the dataset that contains a high value independent set even after an adversary deleted some elements. We present constant-factor approximation algorithms, whose space complexity depends on the rank $k$ of the matroid and the number $d$ of deleted elements. In the centralized setting we present a $(3.582+O(\varepsilon))$-approximation algorithm with summary size $O(k + \frac{d \log k}{\varepsilon^2})$. In the streaming setting we provide a $(5.582+O(\varepsilon))$-approximation algorithm with summary size and memory $O(k + \frac{d \log k}{\varepsilon^2})$. We complement our theoretical results with an in-depth experimental analysis showing the effectiveness of our algorithms on real-world datasets.

We present an algorithm for the maximum matching problem in dynamic (insertion-deletions) streams with *asymptotically optimal* space complexity: for any $n$-vertex graph, our algorithm with high probability outputs an $\alpha$-approximate matching in a single pass using $O(n^2/\alpha^3)$ bits of space. A long line of work on the dynamic streaming matching problem has reduced the gap between space upper and lower bounds first to $n^{o(1)}$ factors [Assadi-Khanna-Li-Yaroslavtsev; SODA 2016] and subsequently to $\text{polylog}{(n)}$ factors [Dark-Konrad; CCC 2020]. Our upper bound now matches the Dark-Konrad lower bound up to $O(1)$ factors, thus completing this research direction. Our approach consists of two main steps: we first (provably) identify a family of graphs, similar to the instances used in prior work to establish the lower bounds for this problem, as the only "hard" instances to focus on. These graphs include an induced subgraph which is both sparse and contains a large matching. We then design a dynamic streaming algorithm for this family of graphs which is more efficient than prior work. The key to this efficiency is a novel sketching method, which bypasses the typical loss of $\text{polylog}{(n)}$-factors in space compared to standard $L_0$-sampling primitives, and can be of independent interest in designing optimal algorithms for other streaming problems.

We consider a class of structured fractional minimization problems, in which the numerator part of the objective is the sum of a differentiable convex function and a convex nonsmooth function, while the denominator part is a concave or convex function. This problem is difficult to solve since it is nonconvex. By exploiting the structure of the problem, we propose two Coordinate Descent (CD) methods for solving this problem. One is applied to the original fractional function, the other is based on the associated parametric problem. The proposed methods iteratively solve a one-dimensional subproblem \textit{globally}, and they are guaranteed to converge to coordinate-wise stationary points. In the case of a convex denominator, we prove that the proposed CD methods using sequential nonconvex approximation find stronger stationary points than existing methods. Under suitable conditions, CD methods with an appropriate initialization converge linearly to the optimal point (also the coordinate-wise stationary point). In the case of a concave denominator, we show that the resulting problem is quasi-convex, and any critical point is a global minimum. We prove that the algorithms converge to the global optimal solution with a sublinear convergence rate. We demonstrate the applicability of the proposed methods to some machine learning and signal processing models. Our experiments on real-world data have shown that our method significantly and consistently outperforms existing methods in terms of accuracy.

The $p$-center problem (pCP) is a fundamental problem in location science, where we are given customer demand points and possible facility locations, and we want to choose $p$ of these locations to open a facility such that the maximum distance of any customer demand point to its closest open facility is minimized. State-of-the-art solution approaches of pCP use its connection to the set cover problem to solve pCP in an iterative fashion by repeatedly solving set cover problems. The classical textbook integer programming (IP) formulation of pCP is usually dismissed due to its size and bad linear programming (LP)-relaxation bounds. We present a novel solution approach that works on a new IP formulation that can be obtained by a projection from the classical formulation. The formulation is solved by means of branch-and-cut, where cuts for demand points are iteratively generated. Moreover, the formulation can be strengthened with combinatorial information to obtain a much tighter LP-relaxation. In particular, we present a novel way to use lower bound information to obtain stronger cuts. We show that the LP-relaxation bound of our strengthened formulation has the same strength as the best known bound in literature, which is based on a semi-relaxation. Finally, we also present a computational study on instances from the literature with up to more than 700000 customers and locations. Our solution algorithm is competitive with highly sophisticated set-cover-based solution algorithms, which depend on various components and parameters.

We prove a bound of $O( k (n+m)\log^{d-1})$ on the number of incidences between $n$ points and $m$ axis parallel boxes in $\mathbb{R}^d$, if no $k$ boxes contain $k$ common points. That is, the incidence graph between the points and the boxes does not contain $K_{k,k}$ as a subgraph. This new bound improves over previous work by a factor of $\log^d n$, for $d >2$. We also study other variants of the problem. For halfspaces, using shallow cuttings, we get a near linear bound in two and three dimensions. Finally, we present near linear bound for the case of shapes in the plane with low union complexity (e.g. fat triangles).

Motivated by applications in DNA-based storage, we study explicit encoding and decoding schemes of binary strings satisfying locally balanced constraints, where the $(\ell,\delta)$-locally balanced constraint requires that the weight of any consecutive substring of length $\ell$ is between $\frac{\ell}{2}-\delta$ and $\frac{\ell}{2}+\delta$. In this paper we present coding schemes for the strongly locally balanced constraints and the locally balanced constraints, respectively. Moreover, we introduce an additional result on the linear recurrence formula of the number of binary strings which are $(6,1)$-locally balanced, as a further attempt to both capacity characterization and new coding strategies for locally balanced constraints.

Gradient coding is a coding theoretic framework to provide robustness against slow or unresponsive machines, known as stragglers, in distributed machine learning applications. Recently, Kadhe et al. proposed a gradient code based on a combinatorial design, called balanced incomplete block design (BIBD), which is shown to outperform many existing gradient codes in worst-case adversarial straggling scenarios. However, parameters for which such BIBD constructions exist are very limited. In this paper, we aim to overcome such limitations and construct gradient codes which exist for a wide range of system parameters while retaining the superior performance of BIBD gradient codes. Two such constructions are proposed, one based on a probabilistic construction that relax the stringent BIBD gradient code constraints, and the other based on taking the Kronecker product of existing gradient codes. The proposed gradient codes allow flexible choices of system parameters while retaining comparable error performance.

Functional constrained optimization is becoming more and more important in machine learning and operations research. Such problems have potential applications in risk-averse machine learning, semisupervised learning, and robust optimization among others. In this paper, we first present a novel Constraint Extrapolation (ConEx) method for solving convex functional constrained problems, which utilizes linear approximations of the constraint functions to define the extrapolation (or acceleration) step. We show that this method is a unified algorithm that achieves the best-known rate of convergence for solving different functional constrained convex composite problems, including convex or strongly convex, and smooth or nonsmooth problems with a stochastic objective and/or stochastic constraints. Many of these rates of convergence were in fact obtained for the first time in the literature. In addition, ConEx is a single-loop algorithm that does not involve any penalty subproblems. Contrary to existing primal-dual methods, it does not require the projection of Lagrangian multipliers into a (possibly unknown) bounded set. Second, for nonconvex functional constrained problems, we introduce a new proximal point method that transforms the initial nonconvex problem into a sequence of convex problems by adding quadratic terms to both the objective and constraints. Under a certain MFCQ-type assumption, we establish the convergence and rate of convergence of this method to KKT points when the convex subproblems are solved exactly or inexactly. For large-scale and stochastic problems, we present a more practical proximal point method in which the approximate solutions of the subproblems are computed by the aforementioned ConEx method. To the best of our knowledge, most of these convergence and complexity results of the proximal point method for nonconvex problems also seem to be new in the literature.

This paper studies the adversarial torn-paper channel. This problem is motivated by applications in DNA data storage where the DNA strands that carry the information may break into smaller pieces that are received out of order. Our model extends the previously researched probabilistic setting to the worst-case. We develop code constructions for any parameters of the channel for which non-vanishing asymptotic rate is possible and show our constructions achieve optimal asymptotic rate while allowing for efficient encoding and decoding. Finally, we extend our results to related settings included multi-strand storage, presence of substitution errors, or incomplete coverage.

A generalization of L{\"u}roth's theorem expresses that every transcendence degree 1 subfield of the rational function field is a simple extension. In this note we show that a classical proof of this theorem also holds to prove this generalization.

小貼士
登錄享
相關主題
北京阿比特科技有限公司