We consider density estimation for Besov spaces when each sample is quantized to only a limited number of bits. We provide a noninteractive adaptive estimator that exploits the sparsity of wavelet bases, along with a simulate-and-infer technique from parametric estimation under communication constraints. We show that our estimator is nearly rate-optimal by deriving minimax lower bounds that hold even when interactive protocols are allowed. Interestingly, while our wavelet-based estimator is almost rate-optimal for Sobolev spaces as well, it is unclear whether the standard Fourier basis, which arise naturally for those spaces, can be used to achieve the same performance.
Randomized controlled trials (RCTs) are the gold standard for evaluating the causal effect of a treatment; however, they often have limited sample sizes and sometimes poor generalizability. On the other hand, non-randomized, observational data derived from large administrative databases have massive sample sizes and better generalizability, but they are prone to unmeasured confounding bias. It is thus of considerable interest to reconcile effect estimates obtained from randomized controlled trials and observational studies investigating the same intervention, potentially harvesting the best from both realms. In this paper, we theoretically characterize the potential efficiency gain of integrating observational data into the RCT-based analysis from a minimax point of view. For estimation, we derive the minimax rate of convergence for the mean squared error, and propose a fully adaptive anchored thresholding estimator that attains the optimal rate up to poly-log factors. For inference, we characterize the minimax rate for the length of confidence intervals and show that adaptation (to unknown confounding bias) is in general impossible. A curious phenomenon thus emerges: for estimation, the efficiency gain from data integration can be achieved without prior knowledge on the magnitude of the confounding bias; for inference, the same task becomes information-theoretically impossible in general. We corroborate our theoretical findings using simulations and a real data example from the RCT DUPLICATE initiative [Franklin et al., 2021b].
Various nonparametric approaches for Bayesian spectral density estimation of stationary time series have been suggested in the literature, mostly based on the Whittle likelihood approximation. A generalization of this approximation has been proposed in Kirch et al. who prove posterior consistency for spectral density estimation in combination with the Bernstein-Dirichlet process prior for Gaussian time series. In this paper, we will extend the posterior consistency result to non-Gaussian time series by employing a general consistency theorem of Shalizi for dependent data and misspecified models. As a special case, posterior consistency for the spectral density under the Whittle likelihood as proposed by Choudhuri, Ghosal and Roy is also extended to non-Gaussian time series. Small sample properties of this approach are illustrated with several examples of non-Gaussian time series.
The estimation of information measures of continuous distributions based on samples is a fundamental problem in statistics and machine learning. In this paper, we analyze estimates of differential entropy in $K$-dimensional Euclidean space, computed from a finite number of samples, when the probability density function belongs to a predetermined convex family $\mathcal{P}$. First, estimating differential entropy to any accuracy is shown to be infeasible if the differential entropy of densities in $\mathcal{P}$ is unbounded, clearly showing the necessity of additional assumptions. Subsequently, we investigate sufficient conditions that enable confidence bounds for the estimation of differential entropy. In particular, we provide confidence bounds for simple histogram based estimation of differential entropy from a fixed number of samples, assuming that the probability density function is Lipschitz continuous with known Lipschitz constant and known, bounded support. Our focus is on differential entropy, but we provide examples that show that similar results hold for mutual information and relative entropy as well.
Consider the following communication scenario. An encoder observes a stochastic process and causally decides when and what to transmit about it, under a constraint on the expected number of bits transmitted per second. A decoder uses the received codewords to causally estimate the process in real time. The encoder and the decoder are synchronized in time. For a class of continuous Markov processes satisfying regularity conditions, we find the optimal encoding and decoding policies that minimize the end-to-end estimation mean-square error under the rate constraint. We show that the optimal encoding policy transmits a $1$-bit codeword once the process innovation passes one of two thresholds. The optimal decoder noiselessly recovers the last sample from the 1-bit codewords and codeword-generating time stamps, and uses it to decide the running estimate of the current process, until the next codeword arrives. In particular, we show the optimal causal code for the Ornstein-Uhlenbeck process and calculate its distortion-rate function. Furthermore, we show that the optimal causal code also minimizes the mean-square cost of a continuous-time control system driven by a continuous Markov process and controlled by an additive control signal.
In this paper, we consider the problem of jointly performing online parameter estimation and optimal sensor placement for a partially observed infinite dimensional linear diffusion process. We present a novel solution to this problem in the form of a continuous-time, two-timescale stochastic gradient descent algorithm, which recursively seeks to maximise the log-likelihood with respect to the unknown model parameters, and to minimise the expected mean squared error of the hidden state estimate with respect to the sensor locations. We also provide extensive numerical results illustrating the performance of the proposed approach in the case that the hidden signal is governed by the two-dimensional stochastic advection-diffusion equation.
In this paper, we study the two-layer fully connected neural network given by $f(X)=\frac{1}{\sqrt{d_1}}\boldsymbol{a}^\top\sigma\left(WX\right)$, where $X\in\mathbb{R}^{d_0\times n}$ is a deterministic data matrix, $W\in\mathbb{R}^{d_1\times d_0}$ and $\boldsymbol{a}\in\mathbb{R}^{d_1}$ are random Gaussian weights, and $\sigma$ is a nonlinear activation function. We obtain the limiting spectral distributions of two kernel matrices related to $f(X)$: the empirical conjugate kernel (CK) and neural tangent kernel (NTK), beyond the linear-width regime ($d_1\asymp n$). Under the ultra-width regime $d_1/n\to\infty$, with proper assumptions on $X$ and $\sigma$, a deformed semicircle law appears. Such limiting law is first proved for general centered sample covariance matrices with correlation and then specified for our neural network model. We also prove non-asymptotic concentrations of empirical CK and NTK around their limiting kernel in the spectral norm, and lower bounds on their smallest eigenvalues. As an application, we verify the random feature regression achieves the same asymptotic performance as its limiting kernel regression in ultra-width limit. The limiting training and test errors for random feature regression are calculated by corresponding kernel regression. We also provide a nonlinear Hanson-Wright inequality suitable for neural networks with random weights and Lipschitz activation functions.
In the first part of this work, we develop a novel scheme for solving nonparametric regression problems. That is the approximation of possibly low regular and noised functions from the knowledge of their approximate values given at some random points. Our proposed scheme is based on the use of the pseudo-inverse of a random projection matrix, combined with some specific properties of the Jacobi polynomials system, as well as some properties of positive definite random matrices. This scheme has the advantages to be stable, robust, accurate and fairly fast in terms of execution time. Moreover and unlike most of the existing nonparametric regression estimators, no extra regularization step is required by our proposed estimator. Although, this estimator is initially designed to work with random sampling set of uni-variate i.i.d. random variables following a Beta distribution, we show that it is still work for a wide range of sampling distribution laws. Moreover, we briefly describe how our estimator can be adapted in order to handle the multivariate case of random sampling sets. In the second part of this work, we extend the random pseudo-inverse scheme technique to build a stable and accurate estimator for solving linear functional regression (LFR) problems. A dyadic decomposition approach is used to construct this last stable estimator for the LFR problem. The performance of the two proposed estimators are illustrated by various numerical simulations. In particular, a real dataset is used to illustrate the performance of our nonparametric regression estimator.
In this study, we develop an asymptotic theory of nonparametric regression for a locally stationary functional time series. First, we introduce the notion of a locally stationary functional time series (LSFTS) that takes values in a semi-metric space. Then, we propose a nonparametric model for LSFTS with a regression function that changes smoothly over time. We establish the uniform convergence rates of a class of kernel estimators, the Nadaraya-Watson (NW) estimator of the regression function, and a central limit theorem of the NW estimator.
We study the problem of estimating an unknown function from noisy data using shallow (single-hidden layer) ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the Euclidean norm of the network weights. This minimization corresponds to the common approach of training a neural network with weight decay. We quantify the performance (mean-squared error) of these neural network estimators when the data-generating function belongs to the space of functions of second-order bounded variation in the Radon domain. This space of functions was recently proposed as the natural function space associated with shallow ReLU neural networks. We derive a minimax lower bound for the estimation problem for this function space and show that the neural network estimators are minimax optimal up to logarithmic factors. We also show that this is a "mixed variation" function space that contains classical multivariate function spaces including certain Sobolev spaces and certain spectral Barron spaces. Finally, we use these results to quantify a gap between neural networks and linear methods (which include kernel methods). This paper sheds light on the phenomenon that neural networks seem to break the curse of dimensionality.
Measurement error is a pervasive issue which renders the results of an analysis unreliable. The measurement error literature contains numerous correction techniques, which can be broadly divided into those which aim to produce exactly consistent estimators, and those which are only approximately consistent. While consistency is a desirable property, it is typically attained only under specific model assumptions. Two techniques, regression calibration and simulation extrapolation, are used frequently in a wide variety of parametric and semiparametric settings. However, in many settings these methods are only approximately consistent. We generalize these corrections, relaxing assumptions placed on replicate measurements. Under regularity conditions, the estimators are shown to be asymptotically normal, with a sandwich estimator for the asymptotic variance. Through simulation, we demonstrate the improved performance of the modified estimators, over the standard techniques, when these assumptions are violated. We motivate these corrections using the Framingham Heart Study, and apply the generalized techniques to an analysis of these data.