The estimation of information measures of continuous distributions based on samples is a fundamental problem in statistics and machine learning. In this paper, we analyze estimates of differential entropy in $K$-dimensional Euclidean space, computed from a finite number of samples, when the probability density function belongs to a predetermined convex family $\mathcal{P}$. First, estimating differential entropy to any accuracy is shown to be infeasible if the differential entropy of densities in $\mathcal{P}$ is unbounded, clearly showing the necessity of additional assumptions. Subsequently, we investigate sufficient conditions that enable confidence bounds for the estimation of differential entropy. In particular, we provide confidence bounds for simple histogram based estimation of differential entropy from a fixed number of samples, assuming that the probability density function is Lipschitz continuous with known Lipschitz constant and known, bounded support. Our focus is on differential entropy, but we provide examples that show that similar results hold for mutual information and relative entropy as well.
We propose confidence regions with asymptotically correct uniform coverage probability of parameters whose Fisher information matrix can be singular at important points of the parameter set. Our work is motivated by the need for reliable inference on scale parameters close or equal to zero in mixed models, which is obtained as a special case. The confidence regions are constructed by inverting a continuous extension of the score test statistic standardized by expected information, which we show exists at points of singular information under regularity conditions. Similar results have previously only been obtained for scalar parameters, under conditions stronger than ours, and applications to mixed models have not been considered. In simulations our confidence regions have near-nominal coverage with as few as $n = 20$ independent observations, regardless of how close to the boundary the true parameter is. It is a corollary of our main results that the proposed test statistic has an asymptotic chi-square distribution with degrees of freedom equal to the number of tested parameters, even if they are on the boundary of the parameter set.
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset. Specifically, we are given a set $T$ of $n$ points in $\mathbb{R}^d$ and a parameter $0< \alpha <\frac 1 2$ such that an $\alpha$-fraction of the points in $T$ are i.i.d. samples from a well-behaved distribution $\mathcal{D}$ and the remaining $(1-\alpha)$-fraction are arbitrary. The goal is to output a small list of vectors, at least one of which is close to the mean of $\mathcal{D}$. We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees, with running time $O(n^{1 + \epsilon_0} d)$, for any fixed $\epsilon_0 > 0$. All prior algorithms for this problem had additional polynomial factors in $\frac 1 \alpha$. We leverage this result, together with additional techniques, to obtain the first almost-linear time algorithms for clustering mixtures of $k$ separated well-behaved distributions, nearly-matching the statistical guarantees of spectral methods. Prior clustering algorithms inherently relied on an application of $k$-PCA, thereby incurring runtimes of $\Omega(n d k)$. This marks the first runtime improvement for this basic statistical problem in nearly two decades. The starting point of our approach is a novel and simpler near-linear time robust mean estimation algorithm in the $\alpha \to 1$ regime, based on a one-shot matrix multiplicative weights-inspired potential decrease. We crucially leverage this new algorithmic framework in the context of the iterative multi-filtering technique of Diakonikolas et al. '18, '20, providing a method to simultaneously cluster and downsample points using one-dimensional projections -- thus, bypassing the $k$-PCA subroutines required by prior algorithms.
The matrix normal model, the family of Gaussian matrix-variate distributions whose covariance matrix is the Kronecker product of two lower dimensional factors, is frequently used to model matrix-variate data. The tensor normal model generalizes this family to Kronecker products of three or more factors. We study the estimation of the Kronecker factors of the covariance matrix in the matrix and tensor models. We show nonasymptotic bounds for the error achieved by the maximum likelihood estimator (MLE) in several natural metrics. In contrast to existing bounds, our results do not rely on the factors being well-conditioned or sparse. For the matrix normal model, all our bounds are minimax optimal up to logarithmic factors, and for the tensor normal model our bound for the largest factor and overall covariance matrix are minimax optimal up to constant factors provided there are enough samples for any estimator to obtain constant Frobenius error. In the same regimes as our sample complexity bounds, we show that an iterative procedure to compute the MLE known as the flip-flop algorithm converges linearly with high probability. Our main tool is geodesic strong convexity in the geometry on positive-definite matrices induced by the Fisher information metric. This strong convexity is determined by the expansion of certain random quantum channels. We also provide numerical evidence that combining the flip-flop algorithm with a simple shrinkage estimator can improve performance in the undersampled regime.
Quantum information decoupling is an important quantum information processing task, which has found broad applications. In this paper, we characterize the performance of catalytic quantum information decoupling regarding the exponential rate under which perfect decoupling is approached, namely, the reliability function. We have obtained the exact formula when the decoupling cost is not larger than a critical value. In the situation of high cost, we provide upper and lower bounds. This result is then applied to quantum state merging and correlation erasure, exploiting their connection to decoupling. As technical tools, we derive the exponents for smoothing the conditional min-entropy and max-information, and we prove a novel bound for the convex-split lemma. Our results are given in terms of the sandwiched R\'enyi divergence, providing it with operational meanings in characterizing how fast the performance of quantum information tasks approach the perfect.
In this note, we investigate how well we can reconstruct the best rank-$r$ approximation of a large matrix from a small number of its entries. We show that even if a data matrix is of full rank and cannot be approximated well by a low-rank matrix, its best low-rank approximations may still be reliably computed or estimated from a small number of its entries. This is especially relevant from a statistical viewpoint: the best low-rank approximations to a data matrix are often of more interest than itself because they capture the more stable and oftentimes more reproducible properties of an otherwise complicated data-generating model. In particular, we investigate two agnostic approaches: the first is based on spectral truncation; and the second is a projected gradient descent based optimization procedure. We argue that, while the first approach is intuitive and reasonably effective, the latter has far superior performance in general. We show that the error depends on how close the matrix is to being of low rank. Both theoretical and numerical evidence is presented to demonstrate the effectiveness of the proposed approaches.
Estimating the difference between quantum data is crucial in quantum computing. However, as typical characterizations of quantum data similarity, the trace distance and quantum fidelity are believed to be exponentially-hard to evaluate in general. In this work, we introduce hybrid quantum-classical algorithms for these two distance measures on near-term quantum devices where no assumption of input state is required. First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm. We in particular provide the technique to extract the desired spectrum information of any Hermitian matrix by local measurement. A novel variational algorithm for trace distance estimation is then derived from this technique, with the assistance of a single ancillary qubit. Notably, VTDE could avoid the barren plateau issue with logarithmic depth circuits due to a local cost function. Second, we introduce the Variational Fidelity Estimation (VFE) algorithm. We combine Uhlmann's theorem and the freedom in purification to translate the estimation task into an optimization problem over a unitary on an ancillary system with fixed purified inputs. We then provide a purification subroutine to complete the translation. Both algorithms are verified by numerical simulations and experimental implementations, exhibiting high accuracy for randomly generated mixed states.
To learn intrinsic low-dimensional structures from high-dimensional data that most discriminate between classes, we propose the principle of Maximal Coding Rate Reduction ($\text{MCR}^2$), an information-theoretic measure that maximizes the coding rate difference between the whole dataset and the sum of each individual class. We clarify its relationships with most existing frameworks such as cross-entropy, information bottleneck, information gain, contractive and contrastive learning, and provide theoretical guarantees for learning diverse and discriminative features. The coding rate can be accurately computed from finite samples of degenerate subspace-like distributions and can learn intrinsic representations in supervised, self-supervised, and unsupervised settings in a unified manner. Empirically, the representations learned using this principle alone are significantly more robust to label corruptions in classification than those using cross-entropy, and can lead to state-of-the-art results in clustering mixed data from self-learned invariant features.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.