亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep Learning methods have significantly advanced various data-driven tasks such as regression, classification, and forecasting. However, much of this progress has been predicated on the strong but often unrealistic assumption that training datasets are balanced with respect to the targets they contain. This misalignment with real-world conditions, where data is frequently imbalanced, hampers the effectiveness of such models in practical applications. Methods that reconsider that assumption and tackle real-world imbalances have begun to emerge and explore avenues to address this challenge. One such promising avenue is representation learning, which enables models to capture complex data characteristics and generalize better to minority classes. By focusing on a richer representation of the feature space, these techniques hold the potential to mitigate the impact of data imbalance. In this survey, we present deep learning works that step away from the balanced-data assumption, employing strategies like representation learning to better approximate real-world imbalances. We also highlight a critical application in SEP forecasting where addressing data imbalance is paramount for success.

相關內容

While data selection methods have been studied extensively in active learning, data pruning, and data augmentation settings, there is little evidence for the efficacy of these methods in industry scale settings, particularly in low-resource languages. Our work presents ways of assessing prospective training examples in those settings for their "usefulness" or "difficulty". We also demonstrate how these measures can be used in selecting important examples for training supervised machine learning models. We primarily experiment with entropy and Error L2-Norm (EL2N) scores. We use these metrics to curate high quality datasets from a large pool of \textit{Weak Signal Labeled} data, which assigns no-defect high confidence hypotheses during inference as ground truth labels. We then conduct training data augmentation experiments using these de-identified datasets and demonstrate that score-based selection can result in a 2% decrease in semantic error rate and 4%-7% decrease in domain classification error rate when compared to the baseline technique of random selection.

Bayesian P-splines and basis determination through Bayesian model selection are both commonly employed strategies for nonparametric regression using spline basis expansions within the Bayesian framework. Despite their widespread use, each method has particular limitations that may introduce potential estimation bias depending on the nature of the target function. To overcome the limitations associated with each method while capitalizing on their respective strengths, we propose a new prior distribution that integrates the essentials of both approaches. The proposed prior distribution assesses the complexity of the spline model based on a penalty term formed by a convex combination of the penalties from both methods. The proposed method exhibits adaptability to the unknown level of smoothness, while achieving the minimax-optimal posterior contraction rate up to a logarithmic factor. We provide an efficient Markov chain Monte Carlo algorithm for implementing the proposed approach. Our extensive simulation study reveals that the proposed method outperforms other competitors in terms of performance metrics or model complexity.

When only few data samples are accessible, utilizing structural prior knowledge is essential for estimating covariance matrices and their inverses. One prominent example is knowing the covariance matrix to be Toeplitz structured, which occurs when dealing with wide sense stationary (WSS) processes. This work introduces a novel class of positive definiteness ensuring likelihood-based estimators for Toeplitz structured covariance matrices (CMs) and their inverses. In order to accomplish this, we derive positive definiteness enforcing constraint sets for the Gohberg-Semencul (GS) parameterization of inverse symmetric Toeplitz matrices. Motivated by the relationship between the GS parameterization and autoregressive (AR) processes, we propose hyperparameter tuning techniques, which enable our estimators to combine advantages from state-of-the-art likelihood and non-parametric estimators. Moreover, we present a computationally cheap closed-form estimator, which is derived by maximizing an approximate likelihood. Due to the ensured positive definiteness, our estimators perform well for both the estimation of the CM and the inverse covariance matrix (ICM). Extensive simulation results validate the proposed estimators' efficacy for several standard Toeplitz structured CMs commonly employed in a wide range of applications.

Molecular communication (MC) is a paradigm that employs molecules as information transmitters, hence, requiring unconventional transceivers and detection techniques for the Internet of Bio-Nano Things (IoBNT). In this study, we provide a novel MC model that incorporates a spherical transmitter and receiver with partial absorption. This model offers a more realistic representation than receiver architectures in literature, e.g. passive or entirely absorbing configurations. An optimization-based technique utilizing particle swarm optimization (PSO) is employed to accurately estimate the cumulative number of molecules received. This technique yields nearly constant correction parameters and demonstrates a significant improvement of 5 times in terms of root mean square error (RMSE). The estimated channel model provides an approximate analytical impulse response; hence, it is used for estimating channel parameters such as distance, diffusion coefficient, or a combination of both. We apply iterative maximum likelihood estimation (MLE) for the parameter estimation, which gives consistent errors compared to the estimated Cramer-Rao Lower Bound (CLRB).

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司