Multiplier, which has a key role in many different applications, is a time-consuming, energy-intensive computation block. Approximate computing is a practical design paradigm that attempts to improve hardware efficacy while keeping computation quality satisfactory. A novel multicolumn 3,3:2 inexact compressor is presented in this paper. It takes three partial products from two adjacent columns each for rapid partial product reduction. The proposed inexact compressor and its derivates enable us to design a high-speed approximate multiplier. Then, another ultra-fast, high-efficient approximate multiplier is achieved by means a systematic truncation strategy. The proposed multipliers accumulate partial products in only two stages, one fewer stage than other approximate multipliers in the literature. Implementation results by Synopsys Design Compiler and 45 nm technology node demonstrates nearly 11.11% higher speed for the second proposed design over the fastest existing approximate multiplier. Furthermore, the new approximate multipliers are applied to the image processing application of image sharpening. Their performance in this application is highly satisfactory. It is shown in this paper that the error pattern of an approximate multiplier, in addition to the mean error distance and error rate, has a direct effect on the outcomes of the image processing application.
Many real-world problems rely on finding eigenvalues and eigenvectors of a matrix. The power iteration algorithm is a simple method for determining the largest eigenvalue and associated eigenvector of a general matrix. This algorithm relies on the idea that repeated multiplication of a randomly chosen vector x by the matrix A gradually amplifies the component of the vector along the eigenvector of the largest eigenvalue of A while suppressing all other components. Unfortunately, the power iteration algorithm may demonstrate slow convergence. In this report, we demonstrate an exponential speed up in convergence of the power iteration algorithm with only a polynomial increase in computation by taking advantage of the commutativity of matrix multiplication.
Unmanned aerial vehicles (UAVs) and Terahertz (THz) technology are envisioned to play paramount roles in next-generation wireless communications. Hence, this paper presents a novel secure UAV-assisted mobile relaying system operating at THz bands for data acquisition from multiple ground user equipments towards a destination. We assume that the UAV-mounted relay may act, besides providing relaying services, as a potential adversary called the untrusted UAV relay. To safeguard end-to-end communications, we present a secure two-phase transmission strategy with cooperative jamming. Then, we formulate an optimization problem in terms of a new measure $-$ secrecy energy efficiency (SEE), defined as the ratio of achievable average secrecy rate to average system power consumption, which enables us to obtain the best possible security level while taking UAV's inherent flight power limitation into account. This optimization problem leads to a joint design of key system parameters, including UAV's trajectory and velocity, communication scheduling, and power allocations. Since the formulated problem is a mixed-integer nonconvex optimization and computationally intractable, we propose alternative algorithms to solve it efficiently via greedy/sequential block coordinated descent, successive convex approximation, and non-linear fractional programming techniques. Numerical results demonstrate significant SEE performance improvement of our designs when compared to other known benchmarks.
Website Fingerprinting (WF) attacks are used by local passive attackers to determine the destination of encrypted internet traffic by comparing the sequences of packets sent to and received by the user to a previously recorded data set. As a result, WF attacks are of particular concern to privacy-enhancing technologies such as Tor. In response, a variety of WF defenses have been developed, though they tend to incur high bandwidth and latency overhead or require additional infrastructure, thus making them difficult to implement in practice. Some lighter-weight defenses have been presented as well; still, they attain only moderate effectiveness against recently published WF attacks. In this paper, we aim to present a realistic and novel defense, RegulaTor, which takes advantage of common patterns in web browsing traffic to reduce both defense overhead and the accuracy of current WF attacks. In the closed-world setting, RegulaTor reduces the accuracy of the state-of-the-art attack, Tik-Tok, against comparable defenses from 66% to 25.4%. To achieve this performance, it requires limited added latency and a bandwidth overhead 39.3% less than the leading moderate-overhead defense. In the open-world setting, RegulaTor limits a precision-tuned Tik-Tok attack to an F-score of .135, compared to .625 for the best comparable defense.
Digital human animation relies on high-quality 3D models of the human face: rigs. A face rig must be accurate and, at the same time, fast to compute. One of the most common rigging models is the blendshape model. We propose a novel algorithm for solving the nonconvex inverse rig problem in facial animation. Our approach is model-based, but in contrast with previous model-based approaches, we use a quadratic instead of the linear approximation to the higher order rig model. This increases the accuracy of the solution by 8 percent on average and, confirmed by the empirical results, increases the sparsity of the resulting parameter vector -- an important feature for interpretability by animation artists. The proposed solution is based on a Levenberg-Marquardt (LM) algorithm, applied to a nonconvex constrained problem with sparsity regularization. In order to reduce the complexity of the iterates, a paradigm of Majorization Minimization (MM) is further invoked, which leads to an easy to solve problem that is separable in the parameters at each algorithm iteration. The algorithm is evaluated on a number of animation datasets, proprietary and open-source, and the results indicate the superiority of our method compared to the standard approach based on the linear rig approximation. Although our algorithm targets the specific problem, it might have additional signal processing applications.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.
Finding approximate Nash equilibria in zero-sum imperfect-information games is challenging when the number of information states is large. Policy Space Response Oracles (PSRO) is a deep reinforcement learning algorithm grounded in game theory that is guaranteed to converge to an approximate Nash equilibrium. However, PSRO requires training a reinforcement learning policy at each iteration, making it too slow for large games. We show through counterexamples and experiments that DCH and Rectified PSRO, two existing approaches to scaling up PSRO, fail to converge even in small games. We introduce Pipeline PSRO (P2SRO), the first scalable general method for finding approximate Nash equilibria in large zero-sum imperfect-information games. P2SRO is able to parallelize PSRO with convergence guarantees by maintaining a hierarchical pipeline of reinforcement learning workers, each training against the policies generated by lower levels in the hierarchy. We show that unlike existing methods, P2SRO converges to an approximate Nash equilibrium, and does so faster as the number of parallel workers increases, across a variety of imperfect information games. We also introduce an open-source environment for Barrage Stratego, a variant of Stratego with an approximate game tree complexity of $10^{50}$. P2SRO is able to achieve state-of-the-art performance on Barrage Stratego and beats all existing bots.
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.
The piecewise constant Mumford-Shah (PCMS) model and the Rudin-Osher-Fatemi (ROF) model are two of the most famous variational models in image segmentation and image restoration, respectively. They have ubiquitous applications in image processing. In this paper, we explore the linkage between these two important models. We prove that for two-phase segmentation problem the optimal solution of the PCMS model can be obtained by thresholding the minimizer of the ROF model. This linkage is still valid for multiphase segmentation under mild assumptions. Thus it opens a new segmentation paradigm: image segmentation can be done via image restoration plus thresholding. This new paradigm, which circumvents the innate non-convex property of the PCMS model, therefore improves the segmentation performance in both efficiency (much faster than state-of-the-art methods based on PCMS model, particularly when the phase number is high) and effectiveness (producing segmentation results with better quality) due to the flexibility of the ROF model in tackling degraded images, such as noisy images, blurry images or images with information loss. As a by-product of the new paradigm, we derive a novel segmentation method, coined thresholded-ROF (T-ROF) method, to illustrate the virtue of manipulating image segmentation through image restoration techniques. The convergence of the T-ROF method under certain conditions is proved, and elaborate experimental results and comparisons are presented.
We propose an algorithm for real-time 6DOF pose tracking of rigid 3D objects using a monocular RGB camera. The key idea is to derive a region-based cost function using temporally consistent local color histograms. While such region-based cost functions are commonly optimized using first-order gradient descent techniques, we systematically derive a Gauss-Newton optimization scheme which gives rise to drastically faster convergence and highly accurate and robust tracking performance. We furthermore propose a novel complex dataset dedicated for the task of monocular object pose tracking and make it publicly available to the community. To our knowledge, It is the first to address the common and important scenario in which both the camera as well as the objects are moving simultaneously in cluttered scenes. In numerous experiments - including our own proposed data set - we demonstrate that the proposed Gauss-Newton approach outperforms existing approaches, in particular in the presence of cluttered backgrounds, heterogeneous objects and partial occlusions.
Object tracking is the cornerstone of many visual analytics systems. While considerable progress has been made in this area in recent years, robust, efficient, and accurate tracking in real-world video remains a challenge. In this paper, we present a hybrid tracker that leverages motion information from the compressed video stream and a general-purpose semantic object detector acting on decoded frames to construct a fast and efficient tracking engine suitable for a number of visual analytics applications. The proposed approach is compared with several well-known recent trackers on the OTB tracking dataset. The results indicate advantages of the proposed method in terms of speed and/or accuracy. Another advantage of the proposed method over most existing trackers is its simplicity and deployment efficiency, which stems from the fact that it reuses and re-purposes the resources and information that may already exist in the system for other reasons.