This work addresses the inverse kinematics of serial robots using conformal geometric algebra. Classical approaches include either the use of homogeneous matrices, which entails high computational cost and execution time or the development of particular geometric strategies that cannot be generalized to arbitrary serial robots. In this work, we present a compact, elegant and intuitive formulation of robot kinematics based on conformal geometric algebra that provides a suitable framework for the closed-form resolution of the inverse kinematic problem for manipulators with a spherical wrist. For serial robots of this kind, the inverse kinematics problem can be split in two subproblems: the position and orientation problems. The latter is solved by appropriately splitting the rotor that defines the target orientation into three simpler rotors, while the former is solved by developing a geometric strategy for each combination of prismatic and revolute joints that forms the position part of the robot. Finally, the inverse kinematics of 7 DoF redundant manipulators with a spherical wrist is solved by extending the geometric solutions obtained in the non-redundant case.
Stateflow models are complex software models, often used as part of safety-critical software solutions designed with Matlab Simulink. They incorporate design principles that are typically very hard to verify formally. In particular, the standard exhaustive formal verification techniques are unlikely to scale well for the complex designs that are developed in industry. Furthermore, the Stateflow language lacks a formal semantics, which additionally hinders the formal analysis. To address these challenges, we lay here the foundations of a scalable technique for provably correct formal analysis of Stateflow models, with respect to invariant properties, based on bounded model checking (BMC) over symbolic executions. The crux of our technique is: i) a representation of the state space of Stateflow models as a symbolic transition system (STS) over the symbolic configurations of the model, as the basis for BMC, and ii) application of incremental BMC, to generate verification results after each unrolling of the next-state relation of the transition system. To this end, we develop a symbolic structural operational semantics (SSOS) for Stateflow, starting from an existing structural operational semantics (SOS), and show the preservation of invariant properties between the two. Next, we define bounded invariant checking for STS over symbolic configurations as a satisfiability problem. We develop an automated procedure for generating the initial and next-state predicates of the STS, and propose an encoding scheme of the bounded invariant checking problem as a set of constraints, ready for automated analysis with standard, off-the-shelf satisfiability solvers. Finally, we present preliminary results from an experimental comparison of our technique against the Simulink Design Verifier, the proprietary built-in tool of the Simulink environment.
In this paper, we propose a simple sparse approximate inverse for triangular matrices (SAIT). Using the Jacobi iteration method, we obtain an expression of the exact inverse of triangular matrix, which is a finite series. The SAIT is constructed based on this series. We apply the SAIT matrices to iterative methods with ILU preconditioners. The two triangular solvers in the ILU preconditioning procedure are replaced by two matrix-vector multiplications, which can be fine-grained parallelized. We test this method by solving some linear systems and eigenvalue problems with preconditioned iterative methods.
Relaxation methods such as Jacobi or Gauss-Seidel are often applied as smoothers in algebraic multigrid. Incomplete factorizations can also be employed, however, direct triangular solves are comparatively slow on GPUs. Previous work by Antz et al. \cite{Anzt2015} proposed an iterative approach for solving such sparse triangular systems. However, when using the stationary Jacobi iteration, if the upper or lower triangular factor is highly non-normal, the iterations will diverge. An ILUT smoother is introduced for classical Ruge-St\"uben C-AMG that applies Ruiz scaling to mitigate the non-normality of the upper triangular factor. Our approach facilitates the use of Jacobi iteration in place of the inherently sequential triangular solve. Because the scaling is applied to the upper triangular factor as opposed to the global matrix, it can be done locally on an MPI-rank for a diagonal block of the global matrix. A performance model is provided along with numerical results for matrices extracted from the PeleLM \cite{PeleLM} pressure continuity solver.
Iterative learning control (ILC) is a powerful technique for high performance tracking in the presence of modeling errors for optimal control applications. There is extensive prior work showing its empirical effectiveness in applications such as chemical reactors, industrial robots and quadcopters. However, there is little prior theoretical work that explains the effectiveness of ILC even in the presence of large modeling errors, where optimal control methods using the misspecified model (MM) often perform poorly. Our work presents such a theoretical study of the performance of both ILC and MM on Linear Quadratic Regulator (LQR) problems with unknown transition dynamics. We show that the suboptimality gap, as measured with respect to the optimal LQR controller, for ILC is lower than that for MM by higher order terms that become significant in the regime of high modeling errors. A key part of our analysis is the perturbation bounds for the discrete Ricatti equation in the finite horizon setting, where the solution is not a fixed point and requires tracking the error using recursive bounds. We back our theoretical findings with empirical experiments on a toy linear dynamical system with an approximate model, a nonlinear inverted pendulum system with misspecified mass, and a nonlinear planar quadrotor system in the presence of wind. Experiments show that ILC outperforms MM significantly, in terms of the cost of computed trajectories, when modeling errors are high.
Variable importance measures are the main tools to analyze the black-box mechanisms of random forests. Although the mean decrease accuracy (MDA) is widely accepted as the most efficient variable importance measure for random forests, little is known about its statistical properties. In fact, the exact MDA definition varies across the main random forest software. In this article, our objective is to rigorously analyze the behavior of the main MDA implementations. Consequently, we mathematically formalize the various implemented MDA algorithms, and then establish their limits when the sample size increases. In particular, we break down these limits in three components: the first one is related to Sobol indices, which are well-defined measures of a covariate contribution to the response variance, widely used in the sensitivity analysis field, as opposed to thethird term, whose value increases with dependence within covariates. Thus, we theoretically demonstrate that the MDA does not target the right quantity when covariates are dependent, a fact that has already been noticed experimentally. To address this issue, we define a new importance measure for random forests, the Sobol-MDA, which fixes the flaws of the original MDA. We prove the consistency of the Sobol-MDA and show thatthe Sobol-MDA empirically outperforms its competitors on both simulated and real data. An open source implementation in R and C++ is available online.
Inverse kinematics - finding joint poses that reach a given Cartesian-space end-effector pose - is a common operation in robotics, since goals and waypoints are typically defined in Cartesian space, but robots must be controlled in joint space. However, existing inverse kinematics solvers return a single solution pose, where systems with more than 6 degrees of freedom support infinitely many such solutions, which can be useful in the presence of constraints, pose preferences, or obstacles. We introduce a method that uses a deep neural network to learn to generate a diverse set of samples from the solution space of such kinematic chains. The resulting samples can be generated quickly (2000 solutions in under 10ms) and accurately (to within 10 millimeters and 2 degrees of an exact solution) and can be rapidly refined by classical methods if necessary.
Clustering categorical distributions in the finite-dimensional probability simplex is a fundamental task met in many applications dealing with normalized histograms. Traditionally, the differential-geometric structures of the probability simplex have been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the dualistic information-geometric structure induced by a smooth dissimilarity measure, the Kullback-Leibler divergence. In this work, we introduce for clustering tasks a novel computationally-friendly framework for modeling geometrically the probability simplex: The {\em Hilbert simplex geometry}. In the Hilbert simplex geometry, the distance is the non-separable Hilbert's metric distance which satisfies the property of information monotonicity with distance level set functions described by polytope boundaries. We show that both the Aitchison and Hilbert simplex distances are norm distances on normalized logarithmic representations with respect to the $\ell_2$ and variation norms, respectively. We discuss the pros and cons of those different statistical modelings, and benchmark experimentally these different kind of geometries for center-based $k$-means and $k$-center clustering. Furthermore, since a canonical Hilbert distance can be defined on any bounded convex subset of the Euclidean space, we also consider Hilbert's geometry of the elliptope of correlation matrices and study its clustering performances compared to Fr\"obenius and log-det divergences.
e give two approximation algorithms solving the Stochastic Boolean Function Evaluation (SBFE) problem for symmetric Boolean functions. The first is an $O(\log n)$-approximation algorithm, based on the submodular goal-value approach of Deshpande, Hellerstein and Kletenik. Our second algorithm, which is simple, is based on the algorithm solving the SBFE problem for $k$-of-$n$ functions, due to Salloum, Breuer, and Ben-Dov. It achieves a $(B-1)$ approximation factor, where $B$ is the number of blocks of 0's and 1's in the standard vector representation of the symmetric Boolean function. As part of the design of the first algorithm, we prove that the goal value of any symmetric Boolean function is less than $n(n+1)/2$. Finally, we give an example showing that for symmetric Boolean functions, minimum expected verification cost and minimum expected evaluation cost are not necessarily equal. This contrasts with a previous result, given by Das, Jafarpour, Orlitsky, Pan and Suresh, which showed that equality holds in the unit-cost case.
Quantile regression is a field with steadily growing importance in statistical modeling. It is a complementary method to linear regression, since computing a range of conditional quantile functions provides a more accurate modelling of the stochastic relationship among variables, especially in the tails. We introduce a non-restrictive and highly flexible nonparametric quantile regression approach based on C- and D-vine copulas. Vine copulas allow for separate modeling of marginal distributions and the dependence structure in the data, and can be expressed through a graph theoretical model given by a sequence of trees. This way we obtain a quantile regression model, that overcomes typical issues of quantile regression such as quantile crossings or collinearity, the need for transformations and interactions of variables. Our approach incorporates a two-step ahead ordering of variables, by maximizing the conditional log-likelihood of the tree sequence, while taking into account the next two tree levels. Further, we show that the nonparametric conditional quantile estimator is consistent. The performance of the proposed methods is evaluated in both low- and high-dimensional settings using simulated and real world data. The results support the superior prediction ability of the proposed models.
The Ensemble Kalman inversion (EKI), proposed by Iglesias et al. for the solution of Bayesian inverse problems of type $y=A u^\dagger +\varepsilon$, with $u^\dagger$ being an unknown parameter and $y$ a given datum, is a powerful tool usually derived from a sequential Monte Carlo point of view. It describes the dynamics of an ensemble of particles $\{u^j(t)\}_{j=1}^J$, whose initial empirical measure is sampled from the prior, evolving over an artificial time $t$ towards an approximate solution of the inverse problem. Using spectral techniques, we provide a complete description of the deterministic dynamics of EKI and their asymptotic behavior in parameter space. In particular, we analyze the dynamics of deterministic EKI and mean-field EKI. We demonstrate that the Bayesian posterior can only be recovered with the mean-field limit and not with finite sample sizes or deterministic EKI. Furthermore, we show that -- even in the deterministic case -- residuals in parameter space do not decrease monotonously in the Euclidean norm and suggest a problem-adapted norm, where monotonicity can be proved. Finally, we derive a system of ordinary differential equations governing the spectrum and eigenvectors of the covariance matrix.