A domain adaptation technique has been proposed in this paper to identify the emotions in generic images containing facial & non-facial objects and non-human components. It addresses the challenge of the insufficient availability of pre-trained models and well-annotated datasets for image emotion recognition (IER). It starts with proposing a facial emotion recognition (FER) system and then moves on to adapting it for image emotion recognition. First, a deep-learning-based FER system has been proposed that classifies a given facial image into discrete emotion classes. Further, an image recognition system has been proposed that adapts the proposed FER system to recognize the emotions portrayed by images using domain adaptation. It classifies the generic images into 'happy,' 'sad,' 'hate,' and 'anger' classes. A novel interpretability approach, Divide and Conquer based Shap (DnCShap), has also been proposed to interpret the highly relevant visual features for emotion recognition. The proposed system's architecture has been decided through ablation studies, and the experiments are conducted on four FER and four IER datasets. The proposed IER system has shown an emotion classification accuracy of 59.61% for the IAPSa dataset, 57.83% for the ArtPhoto dataset, 67.93% for the FI dataset, and 55.13% for the EMOTIC dataset. The important visual features leading to a particular emotion class have been identified, and the embedding plots for various emotion classes have been analyzed to explain the proposed system's predictions.
Untrained networks inspired by deep image prior have shown promising capabilities in recovering a high-quality image from noisy or partial measurements, without requiring training data. Their success has been widely attributed to the spectral bias acting as an implicit regularization induced by suitable network architectures. However, applications of such network-based priors often entail superfluous architectural decisions, overfitting risks, and slow optimization, all of which hinder their practicality. In this work, we propose efficient, architecture-agnostic methods for a more direct frequency control over the network priors: 1) constraining the bandwidth of the white-noise input, 2) controlling the bandwidth of the interpolation-based upsamplers, and 3) regularizing the Lipschitz constants of the layers. We show that even with just one extra line of code, the overfitting issues in underperforming architectures can be alleviated such that their performance gaps with the high-performing counterparts can be largely closed despite their distinct configurations, mitigating the need for architecture tuning. This then makes it possible to employ a more compact model to achieve similar or superior performance to larger models with greater efficiency. Our regularized network priors compare favorably with current supervised and self-supervised methods on MRI reconstruction and image inpainting tasks, serving as a stronger zero-shot baseline reconstructor. Our code will be made publicly available.
Pornographic content occurring in human-machine interaction dialogues can cause severe side effects for users in open-domain dialogue systems. However, research on detecting pornographic language within human-machine interaction dialogues is an important subject that is rarely studied. To advance in this direction, we introduce CensorChat, a dialogue monitoring dataset aimed at detecting whether the dialogue session contains pornographic content. To this end, we collect real-life human-machine interaction dialogues in the wild and break them down into single utterances and single-turn dialogues, with the last utterance spoken by the chatbot. We propose utilizing knowledge distillation of large language models to annotate the dataset. Specifically, first, the raw dataset is annotated by four open-source large language models, with the majority vote determining the label. Second, we use ChatGPT to update the empty label from the first step. Third, to ensure the quality of the validation and test sets, we utilize GPT-4 for label calibration. If the current label does not match the one generated by GPT-4, we employ a self-criticism strategy to verify its correctness. Finally, to facilitate the detection of pornographic text, we develop a series of text classifiers using a pseudo-labeled dataset. Detailed data analysis demonstrates that leveraging knowledge distillation techniques with large language models provides a practical and cost-efficient method for developing pornographic text detectors.
Survival Analysis provides critical insights for partially incomplete time-to-event data in various domains. It is also an important example of probabilistic machine learning. The probabilistic nature of the predictions can be exploited by using (proper) scoring rules in the model fitting process instead of likelihood-based optimization. Our proposal does so in a generic manner and can be used for a variety of model classes. We establish different parametric and non-parametric sub-frameworks that allow different degrees of flexibility. Incorporated into neural networks, it leads to a computationally efficient and scalable optimization routine, yielding state-of-the-art predictive performance. Finally, we show that using our framework, we can recover various parametric models and demonstrate that optimization works equally well when compared to likelihood-based methods.
The ability to efficiently predict adsorption properties of zeolites can be of large benefit in accelerating the design process of novel materials. The existing configuration space for these materials is wide, while existing molecular simulation methods are computationally expensive. In this work, we propose a model which is 4 to 5 orders of magnitude faster at adsorption properties compared to molecular simulations. To validate the model, we generated datasets containing various aluminium configurations for the MOR, MFI, RHO and ITW zeolites along with their heat of adsorptions and Henry coefficients for CO$_2$, obtained from Monte Carlo simulations. The predictions obtained from the Machine Learning model are in agreement with the values obtained from the Monte Carlo simulations, confirming that the model can be used for property prediction. Furthermore, we show that the model can be used for identifying adsorption sites. Finally, we evaluate the capability of our model for generating novel zeolite configurations by using it in combination with a genetic algorithm.
Extracting semantic information from generated text is a useful tool for applications such as automated fact checking or retrieval augmented generation. Currently, this requires either separate models during inference, which increases computational cost, or destructive fine-tuning of the language model. Instead, we propose directly embedding information extraction capabilities into pre-trained language models using probing classifiers, enabling efficient simultaneous text generation and information extraction. For this, we introduce an approach called EMBER and show that it enables named entity recognition in decoder-only language models without fine-tuning them and while incurring minimal additional computational cost at inference time. Specifically, our experiments using GPT-2 show that EMBER maintains high token generation rates during streaming text generation, with only a negligible decrease in speed of around 1% compared to a 43.64% slowdown measured for a baseline using a separate NER model. Code and data are available at //github.com/nicpopovic/EMBER.
We investigate the entity alignment problem with unlabeled dangling cases, meaning that there are entities in the source or target graph having no counterparts in the other, and those entities remain unlabeled. The problem arises when the source and target graphs are of different scales, and it is much cheaper to label the matchable pairs than the dangling entities. To solve the issue, we propose a novel GNN-based dangling detection and entity alignment framework. While the two tasks share the same GNN and are trained together, the detected dangling entities are removed in the alignment. Our framework is featured by a designed entity and relation attention mechanism for selective neighborhood aggregation in representation learning, as well as a positive-unlabeled learning loss for an unbiased estimation of dangling entities. Experimental results have shown that each component of our design contributes to the overall alignment performance which is comparable or superior to baselines, even if the baselines additionally have 30\% of the dangling entities labeled as training data.
Object detectors do not work well when domains largely differ between training and testing data. To overcome this domain gap in object detection without requiring expensive annotations, we consider two problem settings: semi-supervised domain generalizable object detection (SS-DGOD) and weakly-supervised DGOD (WS-DGOD). In contrast to the conventional domain generalization for object detection that requires labeled data from multiple domains, SS-DGOD and WS-DGOD require labeled data only from one domain and unlabeled or weakly-labeled data from multiple domains for training. In this paper, we show that object detectors can be effectively trained on the two settings with the same Mean Teacher learning framework, where a student network is trained with pseudo-labels output from a teacher on the unlabeled or weakly-labeled data. We provide novel interpretations of why the Mean Teacher learning framework works well on the two settings in terms of the relationships between the generalization gap and flat minima in parameter space. On the basis of the interpretations, we also propose incorporating a simple regularization method into the Mean Teacher learning framework to find flatter minima. The experimental results demonstrate that the regularization leads to flatter minima and boosts the performance of the detectors trained with the Mean Teacher learning framework on the two settings. They also indicate that those detectors significantly outperform the state-of-the-art methods.
In the domain generalization literature, a common objective is to learn representations independent of the domain after conditioning on the class label. We show that this objective is not sufficient: there exist counter-examples where a model fails to generalize to unseen domains even after satisfying class-conditional domain invariance. We formalize this observation through a structural causal model and show the importance of modeling within-class variations for generalization. Specifically, classes contain objects that characterize specific causal features, and domains can be interpreted as interventions on these objects that change non-causal features. We highlight an alternative condition: inputs across domains should have the same representation if they are derived from the same object. Based on this objective, we propose matching-based algorithms when base objects are observed (e.g., through data augmentation) and approximate the objective when objects are not observed (MatchDG). Our simple matching-based algorithms are competitive to prior work on out-of-domain accuracy for rotated MNIST, Fashion-MNIST, PACS, and Chest-Xray datasets. Our method MatchDG also recovers ground-truth object matches: on MNIST and Fashion-MNIST, top-10 matches from MatchDG have over 50% overlap with ground-truth matches.
Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning over multiple paragraphs with entities. To explicitly capture the entities' relatedness, KGNN utilizes relational facts in knowledge graph to build the entity graph. The experimental results show that KGNN outperforms in both distractor and full wiki settings than baselines methods on HotpotQA dataset. And our further analysis illustrates KGNN is effective and robust with more retrieved paragraphs.
Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.