亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a "store-carry and forward" fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts - required to implement the proposed detection strategy - are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.

相關內容

Visual detection is a key task in autonomous driving, and it serves as one foundation for self-driving planning and control. Deep neural networks have achieved promising results in various computer vision tasks, but they are known to be vulnerable to adversarial attacks. A comprehensive understanding of deep visual detectors' vulnerability is required before people can improve their robustness. However, only a few adversarial attack/defense works have focused on object detection, and most of them employed only classification and/or localization losses, ignoring the objectness aspect. In this paper, we identify a serious objectness-related adversarial vulnerability in YOLO detectors and present an effective attack strategy aiming the objectness aspect of visual detection in autonomous vehicles. Furthermore, to address such vulnerability, we propose a new objectness-aware adversarial training approach for visual detection. Experiments show that the proposed attack targeting the objectness aspect is 45.17% and 43.50% more effective than those generated from classification and/or localization losses on the KITTI and COCO_traffic datasets, respectively. Also, the proposed adversarial defense approach can improve the detectors' robustness against objectness-oriented attacks by up to 21% and 12% mAP on KITTI and COCO_traffic, respectively.

We lay the groundwork for research in the algorithmic comprehension of infant faces, in anticipation of applications from healthcare to psychology, especially in the early prediction of developmental disorders. Specifically, we introduce the first-ever dataset of infant faces annotated with facial landmark coordinates and pose attributes, demonstrate the inadequacies of existing facial landmark estimation algorithms in the infant domain, and train new state-of-the-art models that significantly improve upon those algorithms using domain adaptation techniques. We touch on the closely related task of facial detection for infants, and also on a challenging case study of infrared baby monitor images gathered by our lab as part of in-field research into the aforementioned developmental issues.

Most prior state-of-the-art adversarial detection works assume that the underlying vulnerable model is accessible, i,e., the model can be trained or its outputs are visible. However, this is not a practical assumption due to factors like model encryption, model information leakage and so on. In this work, we propose a model independent adversarial detection method using a simple energy function to distinguish between adversarial and natural inputs. We train a standalone detector independent of the underlying model, with sequential layer-wise training to increase the energy separation corresponding to natural and adversarial inputs. With this, we perform energy distribution-based adversarial detection. Our method achieves state-of-the-art detection performance (ROC-AUC > 0.9) across a wide range of gradient, score and decision-based adversarial attacks on CIFAR10, CIFAR100 and TinyImagenet datasets. Compared to prior approaches, our method requires ~10-100x less number of operations and parameters for adversarial detection. Further, we show that our detection method is transferable across different datasets and adversarial attacks. For reproducibility, we provide code in the supplementary material.

Interaction between devices, people, and the Internet has given birth to a new digital communication model, the Internet of Things (IoT). The seamless network of these smart devices is the core of this IoT model. However, on the other hand, integrating smart devices to constitute a network introduces many security challenges. These connected devices have created a security blind spot, where cybercriminals can easily launch an attack to compromise the devices using malware proliferation techniques. Therefore, malware detection is considered a lifeline for the survival of IoT devices against cyberattacks. This study proposes a novel IoT Malware Detection Architecture (iMDA) using squeezing and boosting dilated convolutional neural network (CNN). The proposed architecture exploits the concepts of edge and smoothing, multi-path dilated convolutional operations, channel squeezing, and boosting in CNN. Edge and smoothing operations are employed with split-transform-merge (STM) blocks to extract local structure and minor contrast variation in the malware images. STM blocks performed multi-path dilated convolutional operations, which helped recognize the global structure of malware patterns. Additionally, channel squeezing and merging helped to get the prominent reduced and diverse feature maps, respectively. Channel squeezing and boosting are applied with the help of STM block at the initial, middle and final levels to capture the texture variation along with the depth for the sake of malware pattern hunting. The proposed architecture has shown substantial performance compared with the customized CNN models. The proposed iMDA has achieved Accuracy: 97.93%, F1-Score: 0.9394, Precision: 0.9864, MCC: 0. 8796, Recall: 0.8873, AUC-PR: 0.9689 and AUC-ROC: 0.9938.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

Unmanned Aerial Vehicles (UAVs), have intrigued different people from all walks of life, because of their pervasive computing capabilities. UAV equipped with vision techniques, could be leveraged to establish navigation autonomous control for UAV itself. Also, object detection from UAV could be used to broaden the utilization of drone to provide ubiquitous surveillance and monitoring services towards military operation, urban administration and agriculture management. As the data-driven technologies evolved, machine learning algorithm, especially the deep learning approach has been intensively utilized to solve different traditional computer vision research problems. Modern Convolutional Neural Networks based object detectors could be divided into two major categories: one-stage object detector and two-stage object detector. In this study, we utilize some representative CNN based object detectors to execute the computer vision task over Stanford Drone Dataset (SDD). State-of-the-art performance has been achieved in utilizing focal loss dense detector RetinaNet based approach for object detection from UAV in a fast and accurate manner.

Unmanned Aerial Vehicles are increasingly being used in surveillance and traffic monitoring thanks to their high mobility and ability to cover areas at different altitudes and locations. One of the major challenges is to use aerial images to accurately detect cars and count them in real-time for traffic monitoring purposes. Several deep learning techniques were recently proposed based on convolution neural network (CNN) for real-time classification and recognition in computer vision. However, their performance depends on the scenarios where they are used. In this paper, we investigate the performance of two state-of-the-art CNN algorithms, namely Faster R-CNN and YOLOv3, in the context of car detection from aerial images. We trained and tested these two models on a large car dataset taken from UAVs. We demonstrated in this paper that YOLOv3 outperforms Faster R-CNN in sensitivity and processing time, although they are comparable in the precision metric.

There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.

Reinforcement learning (RL) has advanced greatly in the past few years with the employment of effective deep neural networks (DNNs) on the policy networks. With the great effectiveness came serious vulnerability issues with DNNs that small adversarial perturbations on the input can change the output of the network. Several works have pointed out that learned agents with a DNN policy network can be manipulated against achieving the original task through a sequence of small perturbations on the input states. In this paper, we demonstrate furthermore that it is also possible to impose an arbitrary adversarial reward on the victim policy network through a sequence of attacks. Our method involves the latest adversarial attack technique, Adversarial Transformer Network (ATN), that learns to generate the attack and is easy to integrate into the policy network. As a result of our attack, the victim agent is misguided to optimise for the adversarial reward over time. Our results expose serious security threats for RL applications in safety-critical systems including drones, medical analysis, and self-driving cars.

Research on damage detection of road surfaces using image processing techniques has been actively conducted, achieving considerably high detection accuracies. Many studies only focus on the detection of the presence or absence of damage. However, in a real-world scenario, when the road managers from a governing body need to repair such damage, they need to clearly understand the type of damage in order to take effective action. In addition, in many of these previous studies, the researchers acquire their own data using different methods. Hence, there is no uniform road damage dataset available openly, leading to the absence of a benchmark for road damage detection. This study makes three contributions to address these issues. First, to the best of our knowledge, for the first time, a large-scale road damage dataset is prepared. This dataset is composed of 9,053 road damage images captured with a smartphone installed on a car, with 15,435 instances of road surface damage included in these road images. In order to generate this dataset, we cooperated with 7 municipalities in Japan and acquired road images for more than 40 hours. These images were captured in a wide variety of weather and illuminance conditions. In each image, we annotated the bounding box representing the location and type of damage. Next, we used a state-of-the-art object detection method using convolutional neural networks to train the damage detection model with our dataset, and compared the accuracy and runtime speed on both, using a GPU server and a smartphone. Finally, we demonstrate that the type of damage can be classified into eight types with high accuracy by applying the proposed object detection method. The road damage dataset, our experimental results, and the developed smartphone application used in this study are publicly available (//github.com/sekilab/RoadDamageDetector/).

北京阿比特科技有限公司