亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Any optimization alogrithm programming interface can be seen as a black-box function with additional free parameters. In this spirit, simulated annealing (SA) can be implemented in pseudo-code within the dimensions of single slide with free parameters relating to the annealing schedule. Such an implementation however, neglects necessarily much of the structure necessary to take advantage of advances in computing resources, and algorithmic breakthroughs. Simulated annealing is often introduced in myriad disciplines, from discrete examples like the Traveling Salesman Problem (TSP) to molecular cluster potential energy exploration or even explorations of a protein's configurational space. Theoretical guarantees also demand a stricter structure in terms of statistical quantities, which cannot simply be left to the user. We will introduce several standard paradigms and demonstrate how these can be "lifted" into a unified framework using object oriented programming in Python. We demonstrate how clean, interoperable, reproducible programming libraries can be used to access and rapidly iterate on variants of Simulated Annealing in a manner which can be extended to serve as a best practices blueprint or design pattern for a data-driven optimization library.

相關內容

設計模式(Design Pattern)是一套被反復使用、多數人知曉的、經過分類的、代碼設計經驗的總結。

Inverse optimal control methods can be used to characterize behavior in sequential decision-making tasks. Most existing work, however, requires the control signals to be known, or is limited to fully-observable or linear systems. This paper introduces a probabilistic approach to inverse optimal control for stochastic non-linear systems with missing control signals and partial observability that unifies existing approaches. By using an explicit model of the noise characteristics of the sensory and control systems of the agent in conjunction with local linearization techniques, we derive an approximate likelihood for the model parameters, which can be computed within a single forward pass. We evaluate our proposed method on stochastic and partially observable version of classic control tasks, a navigation task, and a manual reaching task. The proposed method has broad applicability, ranging from imitation learning to sensorimotor neuroscience.

The human hand is the main medium through which we interact with our surroundings, making its digitization an important problem. Hence, its digitization is of uttermost importance, with direct applications in VR/AR, gaming, and media production amongst other areas. While there are several works modeling the geometry of hands, little attention has been paid to capturing photo-realistic appearance. Moreover, for applications in extended reality and gaming, real-time rendering is critical. We present the first neural-implicit approach to photo-realistically render hands in real-time. This is a challenging problem as hands are textured and undergo strong articulations with pose-dependent effects. However, we show that this aim is achievable through our carefully designed method. This includes training on a low-resolution rendering of a neural radiance field, together with a 3D-consistent super-resolution module and mesh-guided sampling and space canonicalization. We demonstrate a novel application of perceptual loss on the image space, which is critical for learning details accurately. We also show a live demo where we photo-realistically render the human hand in real-time for the first time, while also modeling pose- and view-dependent appearance effects. We ablate all our design choices and show that they optimize for rendering speed and quality. Our code will be released to encourage further research in this area. The supplementary video can be found at: tinyurl.com/46uvujzn

Safe and efficient collaboration among multiple robots in unstructured environments is increasingly critical in the era of Industry 4.0. However, achieving robust and autonomous collaboration among humans and other robots requires modern robotic systems to have effective proximity perception and reactive obstacle avoidance. In this paper, we propose a novel methodology for reactive whole-body obstacle avoidance that ensures conflict-free robot-robot interactions even in dynamic environment. Unlike existing approaches based on Jacobian-type, sampling based or geometric techniques, our methodology leverages the latest deep learning advances and topological manifold learning, enabling it to be readily generalized to other problem settings with high computing efficiency and fast graph traversal techniques. Our approach allows a robotic arm to proactively avoid obstacles of arbitrary 3D shapes without direct contact, a significant improvement over traditional industrial cobot settings. To validate our approach, we implement it on a robotic platform consisting of dual 6-DoF robotic arms with optimized proximity sensor placement, capable of working collaboratively with varying levels of interference. Specifically, one arm performs reactive whole-body obstacle avoidance while achieving its pre-determined objective, while the other arm emulates the presence of a human collaborator with independent and potentially adversarial movements. Our methodology provides a robust and effective solution for safe human-robot collaboration in non-stationary environments.

DAMON leverages manifold learning and variational autoencoding to achieve obstacle avoidance, allowing for motion planning through adaptive graph traversal in a pre-learned low-dimensional hierarchically-structured manifold graph that captures intricate motion dynamics between a robotic arm and its obstacles. This versatile and reusable approach is applicable to various collaboration scenarios. The primary advantage of DAMON is its ability to embed information in a low-dimensional graph, eliminating the need for repeated computation required by current sampling-based methods. As a result, it offers faster and more efficient motion planning with significantly lower computational overhead and memory footprint. In summary, DAMON is a breakthrough methodology that addresses the challenge of dynamic obstacle avoidance in robotic systems and offers a promising solution for safe and efficient human-robot collaboration. Our approach has been experimentally validated on a 7-DoF robotic manipulator in both simulation and physical settings. DAMON enables the robot to learn and generate skills for avoiding previously-unseen obstacles while achieving predefined objectives. We also optimize DAMON's design parameters and performance using an analytical framework. Our approach outperforms mainstream methodologies, including RRT, RRT*, Dynamic RRT*, L2RRT, and MpNet, with 40\% more trajectory smoothness and over 65\% improved latency performance, on average.

We propose a simple iterative (SI) algorithm for the maxcut problem through fully using an equivalent continuous formulation. It does not need rounding at all and has advantages that all subproblems have explicit analytic solutions, the cut values are monotonically updated and the iteration points converge to a local optima in finite steps via an appropriate subgradient selection. Numerical experiments on G-set demonstrate the performance. In particular, the ratios between the best cut values achieved by SI and those by some advanced combinatorial algorithms in [Ann. Oper. Res. 248 (2017) 365] are at least $0.986$ and can be further improved to at least $0.997$ by a preliminary attempt to break out of local optima.

We present the InterviewBot that dynamically integrates conversation history and customized topics into a coherent embedding space to conduct 10 mins hybrid-domain (open and closed) conversations with foreign students applying to U.S. colleges for assessing their academic and cultural readiness. To build a neural-based end-to-end dialogue model, 7,361 audio recordings of human-to-human interviews are automatically transcribed, where 440 are manually corrected for finetuning and evaluation. To overcome the input/output size limit of a transformer-based encoder-decoder model, two new methods are proposed, context attention and topic storing, allowing the model to make relevant and consistent interactions. Our final model is tested both statistically by comparing its responses to the interview data and dynamically by inviting professional interviewers and various students to interact with it in real-time, finding it highly satisfactory in fluency and context awareness.

Modern SAT solvers are designed to handle problems expressed in Conjunctive Normal Form (CNF) so that non-CNF problems must be CNF-ized upfront, typically by using variants of either Tseitin or Plaisted&Greenbaum transformations. When passing from solving to enumeration, however, the capability of producing partial satisfying assignment that are as small as possible becomes crucial, which raises the question of whether such CNF encodings are also effective for enumeration. In this paper, we investigate both theoretically and empirically the effectiveness of CNF conversions for SAT enumeration. On the negative side, we show that: (i) Tseitin transformation prevents the solver from producing short partial assignments, thus seriously affecting the effectiveness of enumeration; (ii) Plaisted&Greenbaum transformation overcomes this problem only in part. On the positive side, we show that combining Plaisted&Greenbaum transformation with NNF preprocessing upfront -- which is typically not used in solving -- can fully overcome the problem and can drastically reduce both the number of partial assignments and the execution time.

In this paper, a sampling-based trajectory planning algorithm for a laboratory-scale 3D gantry crane in an environment with static obstacles and subject to bounds on the velocity and acceleration of the gantry crane system is presented. The focus is on developing a fast motion planning algorithm for differentially flat systems, where intermediate results can be stored and reused for further tasks, such as replanning. The proposed approach is based on the informed optimal rapidly exploring random tree algorithm (informed RRT*), which is utilized to build trajectory trees that are reused for replanning when the start and/or target states change. In contrast to state-of-the-art approaches, the proposed motion planning algorithm incorporates a linear quadratic minimum time (LQTM) local planner. Thus, dynamic properties such as time optimality and the smoothness of the trajectory are directly considered in the proposed algorithm. Moreover, by integrating the branch-and-bound method to perform the pruning process on the trajectory tree, the proposed algorithm can eliminate points in the tree that do not contribute to finding better solutions. This helps to curb memory consumption and reduce the computational complexity during motion (re)planning. Simulation results for a validated mathematical model of a 3D gantry crane show the feasibility of the proposed approach.

Conductivity reconstruction in an inverse eddy current problem is considered in the present paper. With the electric field measurement on part of domain boundary, we formulate the reconstruction problem to a constrained optimization problem with total variation regularization. Existence and stability are proved for the solution to the optimization problem. The finite element method is employed to discretize the optimization problem. The gradient Lipschitz properties of the objective functional are established for the the discrete optimization problems. We propose the alternating direction method of multipliers to solve the discrete problem. Based on the the gradient Lipschitz property, we prove the convergence by extending the admissible set to the whole finite element space. Finally, we show some numerical experiments to illustrate the efficiency of the proposed methods.

Irregular memory access patterns pose performance and user productivity challenges on distributed-memory systems. They can lead to fine-grained remote communication and the data access patterns are often not known until runtime. The Partitioned Global Address Space (PGAS) programming model addresses these challenges by providing users with a view of a distributed-memory system that resembles a single shared address space. However, this view often leads programmers to write code that causes fine-grained remote communication, which can result in poor performance. Prior work has shown that the performance of irregular applications written in Chapel, a high-level PGAS language, can be improved by manually applying optimizations. However, applying such optimizations by hand reduces the productivity advantages provided by Chapel and the PGAS model. We present an inspector-executor based compiler optimization for Chapel programs that automatically performs remote data replication. While there have been similar compiler optimizations implemented for other PGAS languages, high-level features in Chapel such as implicit processor affinity lead to new challenges for compiler optimization. We evaluate the performance of our optimization across two irregular applications. Our results show that the total runtime can be improved by as much as 52x on a Cray XC system with a low-latency interconnect and 364x on a standard Linux cluster with an Infiniband interconnect, demonstrating that significant performance gains can be achieved without sacrificing user productivity.

北京阿比特科技有限公司