This paper investigates Cross-Domain Sequential Recommendation (CDSR), a promising method that uses information from multiple domains (more than three) to generate accurate and diverse recommendations, and takes into account the sequential nature of user interactions. The effectiveness of these systems often depends on the complex interplay among the multiple domains. In this dynamic landscape, the problem of negative transfer arises, where heterogeneous knowledge between dissimilar domains leads to performance degradation due to differences in user preferences across these domains. As a remedy, we propose a new CDSR framework that addresses the problem of negative transfer by assessing the extent of negative transfer from one domain to another and adaptively assigning low weight values to the corresponding prediction losses. To this end, the amount of negative transfer is estimated by measuring the marginal contribution of each domain to model performance based on a cooperative game theory. In addition, a hierarchical contrastive learning approach that incorporates information from the sequence of coarse-level categories into that of fine-level categories (e.g., item level) when implementing contrastive learning was developed to mitigate negative transfer. Despite the potentially low relevance between domains at the fine-level, there may be higher relevance at the category level due to its generalised and broader preferences. We show that our model is superior to prior works in terms of model performance on two real-world datasets across ten different domains.
This paper introduces the WordArt Designer API, a novel framework for user-driven artistic typography synthesis utilizing Large Language Models (LLMs) on ModelScope. We address the challenge of simplifying artistic typography for non-professionals by offering a dynamic, adaptive, and computationally efficient alternative to traditional rigid templates. Our approach leverages the power of LLMs to understand and interpret user input, facilitating a more intuitive design process. We demonstrate through various case studies how users can articulate their aesthetic preferences and functional requirements, which the system then translates into unique and creative typographic designs. Our evaluations indicate significant improvements in user satisfaction, design flexibility, and creative expression over existing systems. The WordArt Designer API not only democratizes the art of typography but also opens up new possibilities for personalized digital communication and design.
Inspecting the information encoded in hidden representations of large language models (LLMs) can explain models' behavior and verify their alignment with human values. Given the capabilities of LLMs in generating human-understandable text, we propose leveraging the model itself to explain its internal representations in natural language. We introduce a framework called Patchscopes and show how it can be used to answer a wide range of questions about an LLM's computation. We show that prior interpretability methods based on projecting representations into the vocabulary space and intervening on the LLM computation can be viewed as instances of this framework. Moreover, several of their shortcomings such as failure in inspecting early layers or lack of expressivity can be mitigated by Patchscopes. Beyond unifying prior inspection techniques, Patchscopes also opens up new possibilities such as using a more capable model to explain the representations of a smaller model, and unlocks new applications such as self-correction in multi-hop reasoning.
Tactics, Techniques, and Procedures (TTPs) outline the methods attackers use to exploit vulnerabilities. The interpretation of TTPs in the MITRE ATT&CK framework can be challenging for cybersecurity practitioners due to presumed expertise, complex dependencies, and inherent ambiguity. Meanwhile, advancements with Large Language Models (LLMs) have led to recent surge in studies exploring its uses in cybersecurity operations. This leads us to question how well encoder-only (e.g., RoBERTa) and decoder-only (e.g., GPT-3.5) LLMs can comprehend and summarize TTPs to inform analysts of the intended purposes (i.e., tactics) of a cyberattack procedure. The state-of-the-art LLMs have shown to be prone to hallucination by providing inaccurate information, which is problematic in critical domains like cybersecurity. Therefore, we propose the use of Retrieval Augmented Generation (RAG) techniques to extract relevant contexts for each cyberattack procedure for decoder-only LLMs (without fine-tuning). We further contrast such approach against supervised fine-tuning (SFT) of encoder-only LLMs. Our results reveal that both the direct-use of decoder-only LLMs (i.e., its pre-trained knowledge) and the SFT of encoder-only LLMs offer inaccurate interpretation of cyberattack procedures. Significant improvements are shown when RAG is used for decoder-only LLMs, particularly when directly relevant context is found. This study further sheds insights on the limitations and capabilities of using RAG for LLMs in interpreting TTPs.
Large Language Models (LLMs) have demonstrated remarkable capabilities for reinforcement learning (RL) models, such as planning and reasoning capabilities. However, the problems of LLMs and RL model collaboration still need to be solved. In this study, we employ a teacher-student learning framework to tackle these problems, specifically by offering feedback for LLMs using RL models and providing high-level information for RL models with LLMs in a cooperative multi-agent setting. Within this framework, the LLM acts as a teacher, while the RL model acts as a student. The two agents cooperatively assist each other through a process of recursive help, such as "I help you help I help." The LLM agent supplies abstract information to the RL agent, enabling efficient exploration and policy improvement. In turn, the RL agent offers feedback to the LLM agent, providing valuable, real-time information that helps generate more useful tokens. This bi-directional feedback loop promotes optimization, exploration, and mutual improvement for both agents, enabling them to accomplish increasingly challenging tasks. Remarkably, we propose a practical algorithm to address the problem and conduct empirical experiments to evaluate the effectiveness of our method.
Large Language Models (LLMs) have achieved remarkable results in the machine translation evaluation task, yet there remains a gap in knowledge regarding how they utilize the provided data to conduct evaluations. This study aims to explore how LLMs leverage source and reference information in evaluating translations, with the ultimate goal of better understanding the working mechanism of LLMs. To this end, we design the controlled experiments across various input modes and model types, and employ both coarse-grained and fine-grained prompts to discern the utility of source versus reference information. Surprisingly, we find that reference information significantly enhances the evaluation accuracy, while source information sometimes is counterproductive, indicating a lack of cross-lingual capability when using LLMs to evaluate translations. We further conduct a meta-evaluation for translation error detection of LLMs, observing a similar phenomenon. These findings also suggest a potential research direction for LLMs that fully exploits the cross-lingual capability of LLMs to achieve better performance in machine translation evaluation tasks.
Monocular Re-Localization (MRL) is a critical component in autonomous applications, estimating 6 degree-of-freedom ego poses w.r.t. the scene map based on monocular images. In recent decades, significant progress has been made in the development of MRL techniques. Numerous algorithms have accomplished extraordinary success in terms of localization accuracy and robustness. In MRL, scene maps are represented in various forms, and they determine how MRL methods work and how MRL methods perform. However, to the best of our knowledge, existing surveys do not provide systematic reviews about the relationship between MRL solutions and their used scene map representation. This survey fills the gap by comprehensively reviewing MRL methods from such a perspective, promoting further research. 1) We commence by delving into the problem definition of MRL, exploring current challenges, and comparing ours with existing surveys. 2) Many well-known MRL methods are categorized and reviewed into five classes according to the representation forms of utilized map, i.e., geo-tagged frames, visual landmarks, point clouds, vectorized semantic map, and neural network-based map. 3) To quantitatively and fairly compare MRL methods with various map, we introduce some public datasets and provide the performances of some state-of-the-art MRL methods. The strengths and weakness of MRL methods with different map are analyzed. 4) We finally introduce some topics of interest in this field and give personal opinions. This survey can serve as a valuable referenced materials for MRL, and a continuously updated summary of this survey is publicly available to the community at: //github.com/jinyummiao/map-in-mono-reloc.
Inspecting the information encoded in hidden representations of large language models (LLMs) can explain models' behavior and verify their alignment with human values. Given the capabilities of LLMs in generating human-understandable text, we propose leveraging the model itself to explain its internal representations in natural language. We introduce a framework called Patchscopes and show how it can be used to answer a wide range of research questions about an LLM's computation. We show that prior interpretability methods based on projecting representations into the vocabulary space and intervening on the LLM computation, can be viewed as special instances of this framework. Moreover, several of their shortcomings such as failure in inspecting early layers or lack of expressivity can be mitigated by a Patchscope. Beyond unifying prior inspection techniques, Patchscopes also opens up new possibilities such as using a more capable model to explain the representations of a smaller model, and unlocks new applications such as self-correction in multi-hop reasoning.
This paper introduces CADgpt, an innovative plugin integrating Natural Language Processing (NLP) with Rhino3D for enhancing 3D modelling in computer-aided design (CAD) environments. Leveraging OpenAI's GPT-4, CADgpt simplifies the CAD interface, enabling users, particularly beginners, to perform complex 3D modelling tasks through intuitive natural language commands. This approach significantly reduces the learning curve associated with traditional CAD software, fostering a more inclusive and engaging educational environment. The paper discusses CADgpt's technical architecture, including its integration within Rhino3D and the adaptation of GPT-4 capabilities for CAD tasks. It presents case studies demonstrating CADgpt's efficacy in various design scenarios, highlighting its potential to democratise design education by making sophisticated design tools accessible to a broader range of students. The discussion further explores CADgpt's implications for pedagogy and curriculum development, emphasising its role in enhancing creative exploration and conceptual thinking in design education. Keywords: Natural Language Processing, Computer-Aided Design, 3D Modelling, Design Automation, Design Education, Architectural Education
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.