亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Safety and resilience are critical for autonomous unmanned aerial vehicles (UAVs). We introduce MAVFI, the micro aerial vehicles (MAVs) resilience analysis methodology to assess the effect of silent data corruption (SDC) on UAVs' mission metrics, such as flight time and success rate, for accurately measuring system resilience. To enhance the safety and resilience of robot systems bound by size, weight, and power (SWaP), we offer two low-overhead anomaly-based SDC detection and recovery algorithms based on Gaussian statistical models and autoencoder neural networks. Our anomaly error protection techniques are validated in numerous simulated environments. We demonstrate that the autoencoder-based technique can recover up to all failure cases in our studied scenarios with a computational overhead of no more than 0.0062%. Our application-aware resilience analysis framework, MAVFI, can be utilized to comprehensively test the resilience of other Robot Operating System (ROS)-based applications and is publicly available at //github.com/harvard-edge/MAVBench/tree/mavfi.

相關內容

Steady-state visual evoked potentials (SSVEPs) based brain-computer interface (BCI) has received considerable attention due to its high information transfer rate (ITR) and available quantity of targets. However, the performance of frequency identification methods heavily hinges on the amount of user calibration data and data length, which hinders the deployment in real-world applications. Recently, generative adversarial networks (GANs)-based data generation methods have been widely adopted to create synthetic electroencephalography (EEG) data, holds promise to address these issues. In this paper, we proposed a GAN-based end-to-end signal transformation network for data length extension, termed as TEGAN. TEGAN transforms short-length SSVEP signals into long-length artificial SSVEP signals. By incorporating a novel U-Net generator architecture and an auxiliary classifier into the network architecture, the TEGAN could produce conditioned features in the synthetic data. Additionally, we introduced a two-stage training strategy and the LeCam-divergence regularization term to regularize the training process of GAN during the network implementation. The proposed TEGAN was evaluated on two public SSVEP datasets (a 4-class dataset and a 12-class dataset). With the assistance of TEGAN, the performance of traditional frequency recognition methods and deep learning-based methods have been significantly improved under limited calibration data. And the classification performance gap of various frequency recognition methods has been narrowed. This study substantiates the feasibility of the proposed method to extend the data length for short-time SSVEP signals for developing a high-performance BCI system. The proposed GAN-based methods have the great potential of shortening the calibration time and cutting down the budget for various real-world BCI-based applications.

The fifth Affective Behavior Analysis in-the-wild (ABAW) Competition is part of the respective ABAW Workshop which will be held in conjunction with IEEE Computer Vision and Pattern Recognition Conference (CVPR), 2023. The 5th ABAW Competition is a continuation of the Competitions held at ECCV 2022, IEEE CVPR 2022, ICCV 2021, IEEE FG 2020 and CVPR 2017 Conferences, and is dedicated at automatically analyzing affect. For this year's Competition, we feature two corpora: i) an extended version of the Aff-Wild2 database and ii) the Hume-Reaction dataset. The former database is an audiovisual one of around 600 videos of around 3M frames and is annotated with respect to:a) two continuous affect dimensions -valence (how positive/negative a person is) and arousal (how active/passive a person is)-; b) basic expressions (e.g. happiness, sadness, neutral state); and c) atomic facial muscle actions (i.e., action units). The latter dataset is an audiovisual one in which reactions of individuals to emotional stimuli have been annotated with respect to seven emotional expression intensities. Thus the 5th ABAW Competition encompasses four Challenges: i) uni-task Valence-Arousal Estimation, ii) uni-task Expression Classification, iii) uni-task Action Unit Detection, and iv) Emotional Reaction Intensity Estimation. In this paper, we present these Challenges, along with their corpora, we outline the evaluation metrics, we present the baseline systems and illustrate their obtained performance.

Triangle mesh maps have proven to be an efficient 3D environment representation, allowing robots to navigate, indoors as well as in challenging outdoor environments with tunnels, hills and varying slopes. However, any robot navigating autonomously necessarily requires reliable, accurate, and continuous localization in such a mesh map where it plans its paths and missions. We present Mesh ICP Localization (MICP-L), a novel and computationally lightweight method for registering one or more range sensors to a triangle mesh map to continuously localize a robot in 6D even in GPS-denied environments. Simulative Projective Correspondences (SPC) between a range sensor and mesh map are found through simulations accelerated with latest NVIDIA RTX hardware. The optimization of initially guessed poses is performed in parallel even with combined data coming from different range sensors attached to the robot. With this work, we aim to significantly advance the developments in mesh-based localization for autonomous robotic applications. MICP-L is open source and fully integrated with ROS and tf.

Connected and Automated Vehicles (CAVs) are one of the emerging technologies in the automotive domain that has the potential to alleviate the issues of accidents, traffic congestion, and pollutant emissions, leading to a safe, efficient, and sustainable transportation system. Machine learning-based methods are widely used in CAVs for crucial tasks like perception, motion planning, and motion control, where machine learning models in CAVs are solely trained using the local vehicle data, and the performance is not certain when exposed to new environments or unseen conditions. Federated learning (FL) is an effective solution for CAVs that enables a collaborative model development with multiple vehicles in a distributed learning framework. FL enables CAVs to learn from a wide range of driving environments and improve their overall performance while ensuring the privacy and security of local vehicle data. In this paper, we review the progress accomplished by researchers in applying FL to CAVs. A broader view of the various data modalities and algorithms that have been implemented on CAVs is provided. Specific applications of FL are reviewed in detail, and an analysis of the challenges and future scope of research are presented.

Uneven terrain necessarily transforms periodic walking into a non-periodic motion. As such, traditional stability analysis tools no longer adequately capture the ability of a bipedal robot to locomote in the presence of such disturbances. This motivates the need for analytical tools aimed at generalized notions of stability -- robustness. Towards this, we propose a novel definition of robustness, termed \emph{$\delta$-robustness}, to characterize the domain on which a nominal periodic orbit remains stable despite uncertain terrain. This definition is derived by treating perturbations in ground height as disturbances in the context of the input-to-state-stability (ISS) of the extended Poincar\'{e} map associated with a periodic orbit. The main theoretic result is the formulation of robust Lyapunov functions that certify $\delta$-robustness of periodic orbits. This yields an optimization framework for verifying $\delta$-robustness, which is demonstrated in simulation with a bipedal robot walking on uneven terrain.

Blind source separation (BSS) aims to recover an unobserved signal $S$ from its mixture $X=f(S)$ under the condition that the effecting transformation $f$ is invertible but unknown. As this is a basic problem with many practical applications, a fundamental issue is to understand how the solutions to this problem behave when their supporting statistical prior assumptions are violated. In the classical context of linear mixtures, we present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$. Modelling $S$ as a multidimensional stochastic process, we introduce an informative topology on the space of possible causes underlying a mixture $X$, and show that the behaviour of a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees with respect to this topology. This allows for a flexible and convenient quantification of general model uncertainty scenarios and amounts to the first comprehensive robustness framework for BSS. Our approach is entirely constructive, and we demonstrate its utility with novel theoretical guarantees for a number of statistical applications.

The collection of medical image datasets is a demanding and laborious process that requires significant resources. Furthermore, these medical datasets may contain personally identifiable information, necessitating measures to ensure that unauthorized access is prevented. Failure to do so could violate the intellectual property rights of the dataset owner and potentially compromise the privacy of patients. As a result, safeguarding medical datasets and preventing unauthorized usage by AI diagnostic models is a pressing challenge. To address this challenge, we propose a novel visible adversarial watermarking method for medical image copyright protection, called MedLocker. Our approach involves continuously optimizing the position and transparency of a watermark logo, which reduces the performance of the target model, leading to incorrect predictions. Importantly, we ensure that our method minimizes the impact on clinical visualization by constraining watermark positions using semantical masks (WSM), which are bounding boxes of lesion regions based on semantic segmentation. To ensure the transferability of the watermark across different models, we verify the cross-model transferability of the watermark generated on a single model. Additionally, we generate a unique watermark parameter list each time, which can be used as a certification to verify the authorization. We evaluate the performance of MedLocker on various mainstream backbones and validate the feasibility of adversarial watermarking for copyright protection on two widely-used diabetic retinopathy detection datasets. Our results demonstrate that MedLocker can effectively protect the copyright of medical datasets and prevent unauthorized users from analyzing medical images with AI diagnostic models.

Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.

The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司