To design trustworthy Bayesian studies, criteria for posterior-based operating characteristics - such as power and the type I error rate - are often defined in clinical, industrial, and corporate settings. These posterior-based operating characteristics are typically assessed by exploring sampling distributions of posterior probabilities via simulation. In this paper, we propose a scalable method to determine optimal sample sizes and decision criteria that leverages large-sample theory to explore sampling distributions of posterior probabilities in a targeted manner. This targeted exploration approach prompts consistent sample size recommendations with fewer simulation repetitions than standard methods. We repurpose the posterior probabilities computed in that approach to efficiently investigate various sample sizes and decision criteria using contour plots.
With the rapid development of large models, the need for data has become increasingly crucial. Especially in 3D object detection, costly manual annotations have hindered further advancements. To reduce the burden of annotation, we study the problem of achieving 3D object detection solely based on 2D annotations. Thanks to advanced 3D reconstruction techniques, it is now feasible to reconstruct the overall static 3D scene. However, extracting precise object-level annotations from the entire scene and generalizing these limited annotations to the entire scene remain challenges. In this paper, we introduce a novel paradigm called BA$^2$-Det, encompassing pseudo label generation and multi-stage generalization. We devise the DoubleClustering algorithm to obtain object clusters from reconstructed scene-level points, and further enhance the model's detection capabilities by developing three stages of generalization: progressing from complete to partial, static to dynamic, and close to distant. Experiments conducted on the large-scale Waymo Open Dataset show that the performance of BA$^2$-Det is on par with the fully-supervised methods using 10% annotations. Additionally, using large raw videos for pretraining,BA$^2$-Det can achieve a 20% relative improvement on the KITTI dataset. The method also has great potential for detecting open-set 3D objects in complex scenes. Project page: //ba2det.site.
The maximum entropy encoding framework provides a unified perspective for many non-contrastive learning methods like SimSiam, Barlow Twins, and MEC. Inspired by this framework, we introduce Matrix-SSL, a novel approach that leverages matrix information theory to interpret the maximum entropy encoding loss as matrix uniformity loss. Furthermore, Matrix-SSL enhances the maximum entropy encoding method by seamlessly incorporating matrix alignment loss, directly aligning covariance matrices in different branches. Experimental results reveal that Matrix-SSL outperforms state-of-the-art methods on the ImageNet dataset under linear evaluation settings and on MS-COCO for transfer learning tasks. Specifically, when performing transfer learning tasks on MS-COCO, our method outperforms previous SOTA methods such as MoCo v2 and BYOL up to 3.3% with only 400 epochs compared to 800 epochs pre-training. We also try to introduce representation learning into the language modeling regime, achieving 72.3% on the GSM8K dataset by fine-tuning a 7B model using matrix cross-entropy loss, with a margin of 3.1% over the standard cross-entropy loss. Code available at //github.com/yifanzhang-pro/Matrix-SSL.
This paper introduces a novel decision-making framework that promotes consistency among decisions made by diverse models while utilizing external knowledge. Leveraging the Integer Linear Programming (ILP) framework, we map predictions from various models into globally normalized and comparable values by incorporating information about decisions' prior probability, confidence (uncertainty), and the models' expected accuracy. Our empirical study demonstrates the superiority of our approach over conventional baselines on multiple datasets.
To address the communication bottleneck challenge in distributed learning, our work introduces a novel two-stage quantization strategy designed to enhance the communication efficiency of distributed Stochastic Gradient Descent (SGD). The proposed method initially employs truncation to mitigate the impact of long-tail noise, followed by a non-uniform quantization of the post-truncation gradients based on their statistical characteristics. We provide a comprehensive convergence analysis of the quantized distributed SGD, establishing theoretical guarantees for its performance. Furthermore, by minimizing the convergence error, we derive optimal closed-form solutions for the truncation threshold and non-uniform quantization levels under given communication constraints. Both theoretical insights and extensive experimental evaluations demonstrate that our proposed algorithm outperforms existing quantization schemes, striking a superior balance between communication efficiency and convergence performance.
In the current era of vast data and transparent machine learning, it is essential for techniques to operate at a large scale while providing a clear mathematical comprehension of the internal workings of the method. Although there already exist interpretable semi-parametric regression methods for large-scale applications that take into account non-linearity in the data, the complexity of the models is still often limited. One of the main challenges is the absence of interactions in these models, which are left out for the sake of better interpretability but also due to impractical computational costs. To overcome this limitation, we propose a new approach using a factorization method to derive a highly scalable higher-order tensor product spline model. Our method allows for the incorporation of all (higher-order) interactions of non-linear feature effects while having computational costs proportional to a model without interactions. We further develop a meaningful penalization scheme and examine the induced optimization problem. We conclude by evaluating the predictive and estimation performance of our method.
Providing explanations within the recommendation system would boost user satisfaction and foster trust, especially by elaborating on the reasons for selecting recommended items tailored to the user. The predominant approach in this domain revolves around generating text-based explanations, with a notable emphasis on applying large language models (LLMs). However, refining LLMs for explainable recommendations proves impractical due to time constraints and computing resource limitations. As an alternative, the current approach involves training the prompt rather than the LLM. In this study, we developed a model that utilizes the ID vectors of user and item inputs as prompts for GPT-2. We employed a joint training mechanism within a multi-task learning framework to optimize both the recommendation task and explanation task. This strategy enables a more effective exploration of users' interests, improving recommendation effectiveness and user satisfaction. Through the experiments, our method achieving 1.59 DIV, 0.57 USR and 0.41 FCR on the Yelp, TripAdvisor and Amazon dataset respectively, demonstrates superior performance over four SOTA methods in terms of explainability evaluation metric. In addition, we identified that the proposed model is able to ensure stable textual quality on the three public datasets.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.