亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dysarthria is a speech disorder that hinders communication due to difficulties in articulating words. Detection of dysarthria is important for several reasons as it can be used to develop a treatment plan and help improve a person's quality of life and ability to communicate effectively. Much of the literature focused on improving ASR systems for dysarthric speech. The objective of the current work is to develop models that can accurately classify the presence of dysarthria and also give information about the intelligibility level using limited data by employing a few-shot approach using a transformer model. This work also aims to tackle the data leakage that is present in previous studies. Our whisper-large-v2 transformer model trained on a subset of the UASpeech dataset containing medium intelligibility level patients achieved an accuracy of 85%, precision of 0.92, recall of 0.8 F1-score of 0.85, and specificity of 0.91. Experimental results also demonstrate that the model trained using the 'words' dataset performed better compared to the model trained on the 'letters' and 'digits' dataset. Moreover, the multiclass model achieved an accuracy of 67%.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · CZTS · MoDELS · Performer · Signal Processing ·
2023 年 11 月 1 日

Photon counting radiation detectors have become an integral part of medical imaging modalities such as Positron Emission Tomography or Computed Tomography. One of the most promising detectors is the wide bandgap room temperature semiconductor detectors, which depends on the interaction gamma/x-ray photons with the detector material involves Compton scattering which leads to multiple interaction photon events (MIPEs) of a single photon. For semiconductor detectors like CdZnTeSe (CZTS), which have a high overlap of detected energies between Compton and photoelectric events, it is nearly impossible to distinguish between Compton scattered events from photoelectric events using conventional readout electronics or signal processing algorithms. Herein, we report a deep learning classifier CoPhNet that distinguishes between Compton scattering and photoelectric interactions of gamma/x-ray photons with CdZnTeSe (CZTS) semiconductor detectors. Our CoPhNet model was trained using simulated data to resemble actual CZTS detector pulses and validated using both simulated and experimental data. These results demonstrated that our CoPhNet model can achieve high classification accuracy over the simulated test set. It also holds its performance robustness under operating parameter shifts such as Signal-Noise-Ratio (SNR) and incident energy. Our work thus laid solid foundation for developing next-generation high energy gamma-rays detectors for better biomedical imaging.

Recommender systems have been studied for decades with numerous promising models been proposed. Among them, Collaborative Filtering (CF) models are arguably the most successful one due to its high accuracy in recommendation and elimination of privacy-concerned personal meta-data from training. This paper extends the usage of CF-based model to the task of course recommendation. We point out several challenges in applying the existing CF-models to build a course recommendation engine, including the lack of rating and meta-data, the imbalance of course registration distribution, and the demand of course dependency modeling. We then propose several ideas to address these challenges. Eventually, we combine a two-stage CF model regularized by course dependency with a graph-based recommender based on course-transition network, to achieve AUC as high as 0.97 with a real-world dataset.

One precondition of effective oral communication is that words should be pronounced clearly, especially for non-native speakers. Word stress is the key to clear and correct English, and misplacement of syllable stress may lead to misunderstandings. Thus, knowing the stress level is important for English speakers and learners. This paper presents a self-attention model to identify the stress level for each syllable of spoken English. Various prosodic and categorical features, including the pitch level, intensity, duration and type of the syllable and its nuclei (the vowel of the syllable), are explored. These features are input to the self-attention model, and syllable-level stresses are predicted. The simplest model yields an accuracy of over 88% and 93% on different datasets, while more advanced models provide higher accuracy. Our study suggests that the self-attention model can be promising in stress-level detection. These models could be applied to various scenarios, such as online meetings and English learning.

In the era of the Internet of Things (IoT), the retrieval of relevant medical information has become essential for efficient clinical decision-making. This paper introduces MedFusionRank, a novel approach to zero-shot medical information retrieval (MIR) that combines the strengths of pre-trained language models and statistical methods while addressing their limitations. The proposed approach leverages a pre-trained BERT-style model to extract compact yet informative keywords. These keywords are then enriched with domain knowledge by linking them to conceptual entities within a medical knowledge graph. Experimental evaluations on medical datasets demonstrate MedFusion Rank's superior performance over existing methods, with promising results with a variety of evaluation metrics. MedFusionRank demonstrates efficacy in retrieving relevant information, even from short or single-term queries.

To date, the comparison of Statistical Shape Models (SSMs) is often solely performance-based, carried out by means of simplistic metrics such as compactness, generalization, or specificity. Any similarities or differences between the actual shape spaces can neither be visualized nor quantified. In this paper, we present a new method to qualitatively compare two linear SSMs in dense correspondence by computing approximate intersection spaces and set-theoretic differences between the (hyper-ellipsoidal) allowable shape domains spanned by the models. To this end, we approximate the distribution of shapes lying in the intersection space using Markov chain Monte Carlo and subsequently apply Principal Component Analysis (PCA) to the posterior samples, eventually yielding a new SSM of the intersection space. We estimate differences between linear SSMs in a similar manner; here, however, the resulting spaces are no longer convex and we do not apply PCA but instead use the posterior samples for visualization. We showcase the proposed algorithm qualitatively by computing and analyzing intersection spaces and differences between publicly available face models, focusing on gender-specific male and female as well as identity and expression models. Our quantitative evaluation based on SSMs built from synthetic and real-world data sets provides detailed evidence that the introduced method is able to recover ground-truth intersection spaces and differences accurately.

Natural language instructions are a powerful interface for editing the outputs of text-to-image diffusion models. However, several challenges need to be addressed: 1) underspecification (the need to model the implicit meaning of instructions) 2) grounding (the need to localize where the edit has to be performed), 3) faithfulness (the need to preserve the elements of the image not affected by the edit instruction). Current approaches focusing on image editing with natural language instructions rely on automatically generated paired data, which, as shown in our investigation, is noisy and sometimes nonsensical, exacerbating the above issues. Building on recent advances in segmentation, Chain-of-Thought prompting, and visual question answering, we significantly improve the quality of the paired data. In addition, we enhance the supervision signal by highlighting parts of the image that need to be changed by the instruction. The model fine-tuned on the improved data is capable of performing fine-grained object-centric edits better than state-of-the-art baselines, mitigating the problems outlined above, as shown by automatic and human evaluations. Moreover, our model is capable of generalizing to domains unseen during training, such as visual metaphors.

Emotion recognition in text, the task of identifying emotions such as joy or anger, is a challenging problem in NLP with many applications. One of the challenges is the shortage of available datasets that have been annotated with emotions. Certain existing datasets are small, follow different emotion taxonomies and display imbalance in their emotion distribution. In this work, we studied the impact of data augmentation techniques precisely when applied to small imbalanced datasets, for which current state-of-the-art models (such as RoBERTa) under-perform. Specifically, we utilized four data augmentation methods (Easy Data Augmentation EDA, static and contextual Embedding-based, and ProtAugment) on three datasets that come from different sources and vary in size, emotion categories and distributions. Our experimental results show that using the augmented data when training the classifier model leads to significant improvements. Finally, we conducted two case studies: a) directly using the popular chat-GPT API to paraphrase text using different prompts, and b) using external data to augment the training set. Results show the promising potential of these methods.

Visual Relation Extraction (VRE) is a powerful means of discovering relationships between entities within visually-rich documents. Existing methods often focus on manipulating entity features to find pairwise relations, yet neglect the more fundamental structural information that links disparate entity pairs together. The absence of global structure information may make the model struggle to learn long-range relations and easily predict conflicted results. To alleviate such limitations, we propose a GlObal Structure knowledge-guided relation Extraction (GOSE) framework. GOSE initiates by generating preliminary relation predictions on entity pairs extracted from a scanned image of the document. Subsequently, global structural knowledge is captured from the preceding iterative predictions, which are then incorporated into the representations of the entities. This "generate-capture-incorporate" cycle is repeated multiple times, allowing entity representations and global structure knowledge to be mutually reinforced. Extensive experiments validate that GOSE not only outperforms existing methods in the standard fine-tuning setting but also reveals superior cross-lingual learning capabilities; indeed, even yields stronger data-efficient performance in the low-resource setting. The code for GOSE will be available at //github.com/chenxn2020/GOSE.

A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司