亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-dimensional variable selection has emerged as one of the prevailing statistical challenges in the big data revolution. Many variable selection methods have been adapted for identifying single nucleotide polymorphisms (SNPs) linked to phenotypic variation in genome-wide association studies. We develop a Bayesian variable selection regression model for identifying SNPs linked to phenotypic variation. We modify our Bayesian variable selection regression models to control the false discovery rate of SNPs using a knockoff variable approach. We reduce spurious associations by regressing the phenotype of interest against a set of basis functions that account for the relatedness of individuals. Using a restricted regression approach, we simultaneously estimate the SNP-level effects while removing variation in the phenotype that can be explained by population structure. We also accommodate the spatial structure among causal SNPs by modeling their inclusion probabilities jointly with a reduced rank Gaussian process. In a simulation study, we demonstrate that our spatial Bayesian variable selection regression model controls the false discovery rate and increases power when the relevant SNPs are clustered. We conclude with an analysis of Arabidopsis thaliana flowering time, a polygenic trait that is confounded with population structure, and find the discoveries of our method cluster near described flowering time genes.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 估計/估計量 · 有向 · 原點 · 穩健性 ·
2024 年 10 月 2 日

The phase field model is a widely used mathematical approach for describing crack propagation in continuum damage fractures. In the context of phase field fracture simulations, adaptive finite element methods (AFEM) are often employed to address the mesh size dependency of the model. However, existing AFEM approaches for this application frequently rely on heuristic adjustments and empirical parameters for mesh refinement. In this paper, we introduce an adaptive finite element method based on a recovery type posteriori error estimates approach grounded in theoretical analysis. This method transforms the gradient of the numerical solution into a smoother function space, using the difference between the recovered gradient and the original numerical gradient as an error indicator for adaptive mesh refinement. This enables the automatic capture of crack propagation directions without the need for empirical parameters. We have implemented this adaptive method for the Hybrid formulation of the phase field model using the open-source software package FEALPy. The accuracy and efficiency of the proposed approach are demonstrated through simulations of classical 2D and 3D brittle fracture examples, validating the robustness and effectiveness of our implementation.

Control Lyapunov functions are a central tool in the design and analysis of stabilizing controllers for nonlinear systems. Constructing such functions, however, remains a significant challenge. In this paper, we investigate physics-informed learning and formal verification of neural network control Lyapunov functions. These neural networks solve a transformed Hamilton-Jacobi-Bellman equation, augmented by data generated using Pontryagin's maximum principle. Similar to how Zubov's equation characterizes the domain of attraction for autonomous systems, this equation characterizes the null-controllability set of a controlled system. This principled learning of neural network control Lyapunov functions outperforms alternative approaches, such as sum-of-squares and rational control Lyapunov functions, as demonstrated by numerical examples. As an intermediate step, we also present results on the formal verification of quadratic control Lyapunov functions, which, aided by satisfiability modulo theories solvers, can perform surprisingly well compared to more sophisticated approaches and efficiently produce global certificates of null-controllability.

Score-based generative models (or diffusion models for short) have proven successful for generating text and image data. However, the adaption of this model family to tabular data of mixed-type has fallen short so far. In this paper, we propose CDTD, a Continuous Diffusion model for mixed-type Tabular Data. Specifically, we combine score matching and score interpolation to ensure a common continuous noise distribution for both continuous and categorical features alike. We counteract the high heterogeneity inherent to data of mixed-type with distinct, adaptive noise schedules per feature or per data type. The learnable noise schedules ensure optimally allocated model capacity and balanced generative capability. We homogenize the data types further with model-specific loss calibration and initialization schemes tailored to mixed-type tabular data. Our experimental results show that CDTD consistently outperforms state-of-the-art benchmark models, captures feature correlations exceptionally well, and that heterogeneity in the noise schedule design boosts the sample quality.

Sensor calibration is crucial for autonomous driving, providing the basis for accurate localization and consistent data fusion. Enabling the use of high-accuracy GNSS sensors, this work focuses on the antenna lever arm calibration. We propose a globally optimal multi-antenna lever arm calibration approach based on motion measurements. For this, we derive an optimization method that further allows the integration of a-priori knowledge. Globally optimal solutions are obtained by leveraging the Lagrangian dual problem and a primal recovery strategy. Generally, motion-based calibration for autonomous vehicles is known to be difficult due to cars' predominantly planar motion. Therefore, we first describe the motion requirements for a unique solution and then propose a planar motion extension to overcome this issue and enable a calibration based on the restricted motion of autonomous vehicles. Last we present and discuss the results of our thorough evaluation. Using simulated and augmented real-world data, we achieve accurate calibration results and fast run times that allow online deployment.

Many high-dimensional data sets suffer from hidden confounding which affects both the predictors and the response of interest. In such situations, standard regression methods or algorithms lead to biased estimates. This paper substantially extends previous work on spectral deconfounding for high-dimensional linear models to the nonlinear setting and with this, establishes a proof of concept that spectral deconfounding is valid for general nonlinear models. Concretely, we propose an algorithm to estimate high-dimensional sparse additive models in the presence of hidden dense confounding: arguably, this is a simple yet practically useful nonlinear scope. We prove consistency and convergence rates for our method and evaluate it on synthetic data and a genetic data set.

Irregularly sampled time series forecasting, characterized by non-uniform intervals, is prevalent in practical applications. However, previous research have been focused on regular time series forecasting, typically relying on transformer architectures. To extend transformers to handle irregular time series, we tackle the positional embedding which represents the temporal information of the data. We propose CTLPE, a method learning a continuous linear function for encoding temporal information. The two challenges of irregular time series, inconsistent observation patterns and irregular time gaps, are solved by learning a continuous-time function and concise representation of position. Additionally, the linear continuous function is empirically shown superior to other continuous functions by learning a neural controlled differential equation-based positional embedding, and theoretically supported with properties of ideal positional embedding. CTLPE outperforms existing techniques across various irregularly-sampled time series datasets, showcasing its enhanced efficacy.

Dynamic obstacle avoidance is a challenging topic for optimal control and optimization-based trajectory planning problems. Many existing works use Control Barrier Functions (CBFs) to enforce safety constraints for control systems. CBFs are typically formulated based on the distance to obstacles, or integrated with path planning algorithms as a safety enhancement tool. However, these approaches usually require knowledge of the obstacle boundary equations or have very slow computational efficiency. In this paper, we propose a framework based on model predictive control (MPC) with discrete-time high-order CBFs (DHOCBFs) to generate a collision-free trajectory. The DHOCBFs are first obtained from convex polytopes generated through grid mapping, without the need to know the boundary equations of obstacles. Additionally, a path planning algorithm is incorporated into this framework to ensure the global optimality of the generated trajectory. We demonstrate through numerical examples that our framework allows a unicycle robot to safely and efficiently navigate tight, dynamically changing environments with both convex and nonconvex obstacles. By comparing our method to established CBF-based benchmarks, we demonstrate superior computing efficiency, length optimality, and feasibility in trajectory generation and obstacle avoidance.

Efficient inference in high-dimensional models is a central challenge in machine learning. We introduce the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, which combines the strengths of the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation (GaBP) to address this challenge. GEnBP updates ensembles of prior samples into posterior samples by passing low-rank local messages over the edges of a graphical model, enabling efficient handling of high-dimensional states, parameters, and complex, noisy, black-box generation processes. By utilizing local message passing within a graphical model structure, GEnBP effectively manages complex dependency structures and remains computationally efficient even when the ensemble size is much smaller than the inference dimension - a common scenario in spatiotemporal modeling, image processing, and physical model inversion. We demonstrate that GEnBP can be applied to various problem structures, including data assimilation, system identification, and hierarchical models, and show through experiments that it outperforms existing methods in terms of accuracy and computational efficiency. Supporting code is available at //github.com/danmackinlay/GEnBP

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司