We assessed the performance of commercial Large Language Models (LLMs) GPT-3.5-Turbo and GPT-4 on tasks from the 2023 BioASQ challenge. In Task 11b Phase B, which is focused on answer generation, both models demonstrated competitive abilities with leading systems. Remarkably, they achieved this with simple zero-shot learning, grounded with relevant snippets. Even without relevant snippets, their performance was decent, though not on par with the best systems. Interestingly, the older and cheaper GPT-3.5-Turbo system was able to compete with GPT-4 in the grounded Q&A setting on factoid and list answers. In Task 11b Phase A, focusing on retrieval, query expansion through zero-shot learning improved performance, but the models fell short compared to other systems. The code needed to rerun these experiments is available through GitHub.
This paper presents an empirical investigation of the extent to which spoken Humanoid Embodied Conversational Agents (HECAs) can foster usability in mobile serious game (MSG) applications. The aim of the research is to assess the impact of multiple agents and illusion of humanness on the quality of the interaction. The experiment investigates two styles of agent presentation: an agent of high human-likeness (HECA) and an agent of low human-likeness (text). The purpose of the experiment is to assess whether and how agents of high humanlikeness can evoke the illusion of humanness and affect usability. Agents of high human-likeness were designed by following the ECA design model that is a proposed guide for ECA development. The results of the experiment with 90 participants show that users prefer to interact with the HECAs. The difference between the two versions is statistically significant with a large effect size (d=1.01), with many of the participants justifying their choice by saying that the human-like characteristics of the HECA made the version more appealing. This research provides key information on the potential effect of HECAs on serious games, which can provide insight into the design of future mobile serious games.
We present a Split Vector Quantized Variational Autoencoder (SVQ-VAE) architecture using a split vector quantizer for NTTS, as an enhancement to the well-known Variational Autoencoder (VAE) and Vector Quantized Variational Autoencoder (VQ-VAE) architectures. Compared to these previous architectures, our proposed model retains the benefits of using an utterance-level bottleneck, while keeping significant representation power and a discretized latent space small enough for efficient prediction from text. We train the model on recordings in the expressive task-oriented dialogues domain and show that SVQ-VAE achieves a statistically significant improvement in naturalness over the VAE and VQ-VAE models. Furthermore, we demonstrate that the SVQ-VAE latent acoustic space is predictable from text, reducing the gap between the standard constant vector synthesis and vocoded recordings by 32%.
Alzheimer's Disease (AD) is a progressive disease preceded by Mild Cognitive Impairment (MCI). Early detection of AD is crucial for making treatment decisions. However, most of the literature on computer-assisted detection of AD focuses on classifying brain images into one of three major categories: healthy, MCI, and AD; or categorizing MCI patients into (1) progressive: those who progress from MCI to AD at a future examination time, and (2) stable: those who stay as MCI and never progress to AD. This misses the opportunity to accurately identify the trajectory of progressive MCI patients. In this paper, we revisit the brain image classification task for AD identification and re-frame it as an ordinal classification task to predict how close a patient is to the severe AD stage. To this end, we select progressive MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and construct an ordinal dataset with a prediction target that indicates the time to progression to AD. We train a Siamese network model to predict the time to onset of AD based on MRI brain images. We also propose a Weighted variety of Siamese network and compare its performance to a baseline model. Our evaluations show that incorporating a weighting factor to Siamese networks brings considerable performance gain at predicting how close input brain MRI images are to progressing to AD. Moreover, we complement our results with an interpretation of the learned embedding space of the Siamese networks using a model explainability technique.
We present the first shared task for detecting and analyzing code-switching in Guarani and Spanish, GUA-SPA at IberLEF 2023. The challenge consisted of three tasks: identifying the language of a token, NER, and a novel task of classifying the way a Spanish span is used in the code-switched context. We annotated a corpus of 1500 texts extracted from news articles and tweets, around 25 thousand tokens, with the information for the tasks. Three teams took part in the evaluation phase, obtaining in general good results for Task 1, and more mixed results for Tasks 2 and 3.
This paper presents a novel safe reinforcement learning algorithm for strategic bidding of Virtual Power Plants (VPPs) in day-ahead electricity markets. The proposed algorithm utilizes the Deep Deterministic Policy Gradient (DDPG) method to learn competitive bidding policies without requiring an accurate market model. Furthermore, to account for the complex internal physical constraints of VPPs we introduce two enhancements to the DDPG method. Firstly, a projection-based safety shield that restricts the agent's actions to the feasible space defined by the non-linear power flow equations and operating constraints of distributed energy resources is derived. Secondly, a penalty for the shield activation in the reward function that incentivizes the agent to learn a safer policy is introduced. A case study based on the IEEE 13-bus network demonstrates the effectiveness of the proposed approach in enabling the agent to learn a highly competitive, safe strategic policy.
This paper investigates the strategic decision-making capabilities of three Large Language Models (LLMs): GPT-3.5, GPT-4, and LLaMa-2, within the framework of game theory. Utilizing four canonical two-player games -- Prisoner's Dilemma, Stag Hunt, Snowdrift, and Prisoner's Delight -- we explore how these models navigate social dilemmas, situations where players can either cooperate for a collective benefit or defect for individual gain. Crucially, we extend our analysis to examine the role of contextual framing, such as diplomatic relations or casual friendships, in shaping the models' decisions. Our findings reveal a complex landscape: while GPT-3.5 is highly sensitive to contextual framing, it shows limited ability to engage in abstract strategic reasoning. Both GPT-4 and LLaMa-2 adjust their strategies based on game structure and context, but LLaMa-2 exhibits a more nuanced understanding of the games' underlying mechanics. These results highlight the current limitations and varied proficiencies of LLMs in strategic decision-making, cautioning against their unqualified use in tasks requiring complex strategic reasoning.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.