This literature review aimed to compare various time-series analysis approaches utilized in forecasting COVID-19 cases in Africa. The study involved a methodical search for English-language research papers published between January 2020 and July 2023, focusing specifically on papers that utilized time-series analysis approaches on COVID-19 datasets in Africa. A variety of databases including PubMed, Google Scholar, Scopus, and Web of Science were utilized for this process. The research papers underwent an evaluation process to extract relevant information regarding the implementation and performance of the time-series analysis models. The study highlighted the different methodologies employed, evaluating their effectiveness and limitations in forecasting the spread of the virus. The result of this review could contribute deeper insights into the field, and future research should consider these insights to improve time series analysis models and explore the integration of different approaches for enhanced public health decision-making.
The concept of creating a virtual copy of a complete Cyber-Physical System opens up numerous possibilities, including real-time assessments of the physical environment and continuous learning from the system to provide reliable and precise information. This process, known as the twinning process or the development of a digital twin (DT), has been widely adopted across various industries. However, challenges arise when considering the computational demands of implementing AI models, such as those employed in digital twins, in real-time information exchange scenarios. This work proposes a digital twin framework for optimal and autonomous decision-making applied to a gas-lift process in the oil and gas industry, focusing on enhancing the robustness and adaptability of the DT. The framework combines Bayesian inference, Monte Carlo simulations, transfer learning, online learning, and novel strategies to confer cognition to the DT, including model hyperdimensional reduction and cognitive tack. Consequently, creating a framework for efficient, reliable, and trustworthy DT identification was possible. The proposed approach addresses the current gap in the literature regarding integrating various learning techniques and uncertainty management in digital twin strategies. This digital twin framework aims to provide a reliable and efficient system capable of adapting to changing environments and incorporating prediction uncertainty, thus enhancing the overall decision-making process in complex, real-world scenarios. Additionally, this work lays the foundation for further developments in digital twins for process systems engineering, potentially fostering new advancements and applications across various industrial sectors.
Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
With the increasing pursuit of objective reports, automatically understanding media bias has drawn more attention in recent research. However, most of the previous work examines media bias from Western ideology, such as the left and right in the political spectrum, which is not applicable to Chinese outlets. Based on the previous lexical bias and informational bias structure, we refine it from the Chinese perspective and go one step further to craft data with 7 fine-grained labels. To be specific, we first construct a dataset with Chinese news reports about COVID-19 which is annotated by our newly designed system, and then conduct substantial experiments on it to detect media bias. However, the scale of the annotated data is not enough for the latest deep-learning technology, and the cost of human annotation in media bias, which needs a lot of professional knowledge, is too expensive. Thus, we explore some context enrichment methods to automatically improve these problems. In Data-Augmented Context Enrichment (DACE), we enlarge the training data; while in Retrieval-Augmented Context Enrichment (RACE), we improve information retrieval methods to select valuable information and integrate it into our models to better understand bias. Extensive experiments are conducted on both our dataset and an English dataset BASIL. Our results show that both methods outperform our baselines, while the RACE methods are more efficient and have more potential.
We present multimodal neural posterior estimation (MultiNPE), a method to integrate heterogeneous data from different sources in simulation-based inference with neural networks. Inspired by advances in attention-based deep fusion learning, it empowers researchers to analyze data from different domains and infer the parameters of complex mathematical models with increased accuracy. We formulate different multimodal fusion approaches for MultiNPE (early, late, and hybrid) and evaluate their performance in three challenging numerical experiments. MultiNPE not only outperforms na\"ive baselines on a benchmark model, but also achieves superior inference on representative scientific models from neuroscience and cardiology. In addition, we systematically investigate the impact of partially missing data on the different fusion strategies. Across our different experiments, late and hybrid fusion techniques emerge as the methods of choice for practical applications of multimodal simulation-based inference.
Cloth-changing person reidentification (ReID) is a newly emerging research topic that is aimed at addressing the issues of large feature variations due to cloth-changing and pedestrian view/pose changes. Although significant progress has been achieved by introducing extra information (e.g., human contour sketching information, human body keypoints, and 3D human information), cloth-changing person ReID is still challenging due to impressionable pedestrian representations. Moreover, human semantic information and pedestrian identity information are not fully explored. To solve these issues, we propose a novel identity-guided collaborative learning scheme (IGCL) for cloth-changing person ReID, where the human semantic is fully utilized and the identity is unchangeable to guide collaborative learning. First, we design a novel clothing attention degradation stream to reasonably reduce the interference caused by clothing information where clothing attention and mid-level collaborative learning are employed. Second, we propose a human semantic attention and body jigsaw stream to highlight the human semantic information and simulate different poses of the same identity. In this way, the extraction features not only focus on human semantic information that is unrelated to the background but also are suitable for pedestrian pose variations. Moreover, a pedestrian identity enhancement stream is further proposed to enhance the identity importance and extract more favorable identity robust features. Most importantly, all these streams are jointly explored in an end-to-end unified framework, and the identity is utilized to guide the optimization. Extensive experiments on five public clothing person ReID datasets demonstrate that the proposed IGCL significantly outperforms SOTA methods and that the extracted feature is more robust, discriminative, and clothing-irrelevant.
Code completion models have made significant progress in recent years, yet current popular evaluation datasets, such as HumanEval and MBPP, predominantly focus on code completion tasks within a single file. This over-simplified setting falls short of representing the real-world software development scenario where repositories span multiple files with numerous cross-file dependencies, and accessing and understanding cross-file context is often required to complete the code correctly. To fill in this gap, we propose CrossCodeEval, a diverse and multilingual code completion benchmark that necessitates an in-depth cross-file contextual understanding to complete the code accurately. CrossCodeEval is built on a diverse set of real-world, open-sourced, permissively-licensed repositories in four popular programming languages: Python, Java, TypeScript, and C#. To create examples that strictly require cross-file context for accurate completion, we propose a straightforward yet efficient static-analysis-based approach to pinpoint the use of cross-file context within the current file. Extensive experiments on state-of-the-art code language models like CodeGen and StarCoder demonstrate that CrossCodeEval is extremely challenging when the relevant cross-file context is absent, and we see clear improvements when adding these context into the prompt. However, despite such improvements, the pinnacle of performance remains notably unattained even with the highest-performing model, indicating that CrossCodeEval is also capable of assessing model's capability in leveraging extensive context to make better code completion. Finally, we benchmarked various methods in retrieving cross-file context, and show that CrossCodeEval can also be used to measure the capability of code retrievers.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.