Meshes are ubiquitous in visual computing and simulation, yet most existing machine learning techniques represent meshes only indirectly, e.g. as the level set of a scalar field or deformation of a template, or as a disordered triangle soup lacking local structure. This work presents a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network. Our key innovation is to define a continuous latent connectivity space at each mesh vertex, which implies the discrete mesh. In particular, our vertex embeddings generate cyclic neighbor relationships in a halfedge mesh representation, which gives a guarantee of edge-manifoldness and the ability to represent general polygonal meshes. This representation is well-suited to machine learning and stochastic optimization, without restriction on connectivity or topology. We first explore the basic properties of this representation, then use it to fit distributions of meshes from large datasets. The resulting models generate diverse meshes with tessellation structure learned from the dataset population, with concise details and high-quality mesh elements. In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
Owing to advancements in deep learning technology, Vision Transformers (ViTs) have demonstrated impressive performance in various computer vision tasks. Nonetheless, ViTs still face some challenges, such as high computational complexity and the absence of desirable inductive biases. To alleviate these issues, {the potential advantages of combining eagle vision with ViTs are explored. We summarize a Bi-Fovea Visual Interaction (BFVI) structure inspired by the unique physiological and visual characteristics of eagle eyes. A novel Bi-Fovea Self-Attention (BFSA) mechanism and Bi-Fovea Feedforward Network (BFFN) are proposed based on this structural design approach, which can be used to mimic the hierarchical and parallel information processing scheme of the biological visual cortex, enabling networks to learn feature representations of targets in a coarse-to-fine manner. Furthermore, a Bionic Eagle Vision (BEV) block is designed as the basic building unit based on the BFSA mechanism and BFFN. By stacking BEV blocks, a unified and efficient family of pyramid backbone networks called Eagle Vision Transformers (EViTs) is developed. Experimental results show that EViTs exhibit highly competitive performance in various computer vision tasks, such as image classification, object detection and semantic segmentation. Compared with other approaches, EViTs have significant advantages, especially in terms of performance and computational efficiency. Code is available at //github.com/nkusyl/EViT
Graph similarity computation (GSC) aims to quantify the similarity score between two graphs. Although recent GSC methods based on graph neural networks (GNNs) take advantage of intra-graph structures in message passing, few of them fully utilize the structures presented by edges to boost the representation of their connected nodes. Moreover, previous cross-graph node embedding matching lacks the perception of the overall structure of the graph pair, due to the fact that the node representations from GNNs are confined to the intra-graph structure, causing the unreasonable similarity score. Intuitively, the cross-graph structure represented in the assignment graph is helpful to rectify the inappropriate matching. Therefore, we propose a structure-enhanced graph matching network (SEGMN). Equipped with a dual embedding learning module and a structure perception matching module, SEGMN achieves structure enhancement in both embedding learning and cross-graph matching. The dual embedding learning module incorporates adjacent edge representation into each node to achieve a structure-enhanced representation. The structure perception matching module achieves cross-graph structure enhancement through assignment graph convolution. The similarity score of each cross-graph node pair can be rectified by aggregating messages from structurally relevant node pairs. Experimental results on benchmark datasets demonstrate that SEGMN outperforms the state-of-the-art GSC methods in the GED regression task, and the structure perception matching module is plug-and-play, which can further improve the performance of the baselines by up to 25%.
Recent developments in 2D visual generation have been remarkably successful. However, 3D and 4D generation remain challenging in real-world applications due to the lack of large-scale 4D data and effective model design. In this paper, we propose to jointly investigate general 3D and 4D generation by leveraging camera and object movements commonly observed in daily life. Due to the lack of real-world 4D data in the community, we first propose a data curation pipeline to obtain camera poses and object motion strength from videos. Based on this pipeline, we introduce a large-scale real-world 4D scene dataset: CamVid-30K. By leveraging all the 3D and 4D data, we develop our framework, GenXD, which allows us to produce any 3D or 4D scene. We propose multiview-temporal modules, which disentangle camera and object movements, to seamlessly learn from both 3D and 4D data. Additionally, GenXD employs masked latent conditions to support a variety of conditioning views. GenXD can generate videos that follow the camera trajectory as well as consistent 3D views that can be lifted into 3D representations. We perform extensive evaluations across various real-world and synthetic datasets, demonstrating GenXD's effectiveness and versatility compared to previous methods in 3D and 4D generation.
In computer vision, Image Difference Captioning (IDC) is crucial for accurately describing variations between closely related images. Traditional IDC methods often rely on specialist models, which restrict their applicability across varied contexts. This paper introduces the OneDiff model, a novel generalist approach that utilizes a robust vision-language model architecture, integrating a siamese image encoder with a Visual Delta Module. This innovative configuration allows for the precise detection and articulation of fine-grained differences between image pairs. OneDiff is trained through a dual-phase strategy, encompassing Coupled Sample Training and multi-task learning across a diverse array of data types, supported by our newly developed DiffCap Dataset. This dataset merges real-world and synthetic data, enhancing the training process and bolstering the model's robustness. Extensive testing on diverse IDC benchmarks, such as Spot-the-Diff, Image-Editing-Request, and Birds-to-Words, shows that OneDiff consistently outperforms existing state-of-the-art models in accuracy and adaptability, achieving improvements of up to 97% CIDEr points in average. By setting a new benchmark in IDC, OneDiff paves the way for more versatile and effective applications in detecting and describing visual differences. The code, models, and data will be made publicly available.
In the era of the Internet of Things (IoT) and data sharing, users frequently upload their personal information to enterprise databases to enjoy enhanced service experiences provided by various online services. However, the widespread presence of system vulnerabilities, remote network intrusions, and insider threats significantly increases the exposure of private enterprise data on the internet. If such data is stolen or leaked by attackers, it can result in severe asset losses and business operation disruptions. To address these challenges, this paper proposes a novel threat detection framework, TabITD. This framework integrates Intrusion Detection Systems (IDS) with User and Entity Behavior Analytics (UEBA) strategies to form a collaborative detection system that bridges the gaps in existing systems' capabilities. It effectively addresses the blurred boundaries between external and insider threats caused by the diversification of attack methods, thereby enhancing the model's learning ability and overall detection performance. Moreover, the proposed method leverages the TabNet architecture, which employs a sparse attention feature selection mechanism that allows TabNet to select the most relevant features at each decision step, thereby improving the detection of rare-class attacks. We evaluated our proposed solution on two different datasets, achieving average accuracies of 96.71% and 97.25%, respectively. The results demonstrate that this approach can effectively detect malicious behaviors such as masquerade attacks and external threats, significantly enhancing network security defenses and the efficiency of network attack detection.
Deep learning techniques have achieved superior performance in computer-aided medical image analysis, yet they are still vulnerable to imperceptible adversarial attacks, resulting in potential misdiagnosis in clinical practice. Oppositely, recent years have also witnessed remarkable progress in defense against these tailored adversarial examples in deep medical diagnosis systems. In this exposition, we present a comprehensive survey on recent advances in adversarial attacks and defenses for medical image analysis with a systematic taxonomy in terms of the application scenario. We also provide a unified framework for different types of adversarial attack and defense methods in the context of medical image analysis. For a fair comparison, we establish a new benchmark for adversarially robust medical diagnosis models obtained by adversarial training under various scenarios. To the best of our knowledge, this is the first survey paper that provides a thorough evaluation of adversarially robust medical diagnosis models. By analyzing qualitative and quantitative results, we conclude this survey with a detailed discussion of current challenges for adversarial attack and defense in medical image analysis systems to shed light on future research directions. Code is available on \href{//github.com/tomvii/Adv_MIA}{\color{red}{GitHub}}.
Spurred by the demand for interpretable models, research on eXplainable AI for language technologies has experienced significant growth, with feature attribution methods emerging as a cornerstone of this progress. While prior work in NLP explored such methods for classification tasks and textual applications, explainability intersecting generation and speech is lagging, with existing techniques failing to account for the autoregressive nature of state-of-the-art models and to provide fine-grained, phonetically meaningful explanations. We address this gap by introducing Spectrogram Perturbation for Explainable Speech-to-text Generation (SPES), a feature attribution technique applicable to sequence generation tasks with autoregressive models. SPES provides explanations for each predicted token based on both the input spectrogram and the previously generated tokens. Extensive evaluation on speech recognition and translation demonstrates that SPES generates explanations that are faithful and plausible to humans.
Statistical methods have been widely misused and misinterpreted in various scientific fields, raising significant concerns about the integrity of scientific research. To mitigate this problem, we propose a new method for formally specifying and automatically verifying the correctness of statistical programs. In this method, programmers are required to annotate the source code of the statistical programs with the requirements for these methods. Through this annotation, they are reminded to check the requirements for statistical methods, including those that cannot be formally verified, such as the distribution of the unknown true population. Our software tool StatWhy automatically checks whether programmers have properly specified the requirements for the statistical methods, thereby identifying any missing requirements that need to be addressed. This tool is implemented using the Why3 platform to verify the correctness of OCaml programs that conduct statistical hypothesis testing. We demonstrate how StatWhy can be used to avoid common errors in various popular statistical hypothesis testing programs.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.