This paper adresses the problem of testing for the equality of $k$ probability distributions on Hilbert spaces, with $k\geqslant 2$. We introduce a generalization of the maximum variance discrepancy called multiple maximum variance discrepancy (MMVD). Then, a consistent estimator of this measure is proposed as test statistic, and its asymptotic distribution under the null hypothesis is derived. A simulation study comparing the proposed test with existing ones is provided
This paper is a significant step forward in understanding dependency equilibria within the framework of real algebraic geometry encompassing both pure and mixed equilibria. We start by breaking down the concept for a general audience, using concrete examples to illustrate the main results. In alignment with Spohn's original definition of dependency equilibria, we propose three alternative definitions, allowing for an algebro-geometric comprehensive study of all dependency equilibria. We give a sufficient condition for the existence of a pure dependency equilibrium and show that every Nash equilibrium lies on the Spohn variety, the algebraic model for dependency equilibria. For generic games, the set of real points of the Spohn variety is Zariski dense. Furthermore, every Nash equilibrium in this case is a dependency equilibrium. Finally, we present a detailed analysis of the geometric structure of dependency equilibria for $(2\times2)$-games.
Semitopologies model consensus in distributed system by equating the notion of a quorum -- a set of participants sufficient to make local progress -- with that of an open set. This yields a topology-like theory of consensus, but semitopologies generalise topologies, since the intersection of two quorums need not necessarily be a quorum. The semitopological model of consensus is naturally heterogeneous and local, just like topologies can be heterogenous and local, and for the same reasons: points may have different quorums and there is no restriction that open sets / quorums be uniformly generated (e.g. open sets can be something other than two-thirds majorities of the points in the space). Semiframes are an algebraic abstraction of semitopologies. They are to semitopologies as frames are to topologies. We give a notion of semifilter, which plays a role analogous to filters, and show how to build a semiframe out of the open sets of a semitopology, and a semitopology out of the semifilters of a semiframe. We define suitable notions of category and morphism and prove a categorical duality between (sober) semiframes and (spatial) semitopologies, and investigate well-behavedness properties on semitopologies and semiframes across the duality. Surprisingly, the structure of semiframes is not what one might initially expect just from looking at semitopologies, and the canonical structure required for the duality result -- a compatibility relation *, generalising sets intersection -- is also canonical for expressing well-behavedness properties. Overall, we deliver a new categorical, algebraic, abstract framework within which to study consensus on distributed systems, and which is also simply interesting to consider as a mathematical theory in its own right.
We consider the dynamics of $n$ points on a sphere in $\mathbb{R}^d$ ($d \geq 2$) which attract each other according to a function $\varphi$ of their inner products. When $\varphi$ is linear ($\varphi(t) = t$), the points converge to a common value (i.e., synchronize) in various connectivity scenarios: this is part of classical work on Kuramoto oscillator networks. When $\varphi$ is exponential ($\varphi(t) = e^{\beta t}$), these dynamics correspond to a limit of how idealized transformers process data, as described by Geshkovski et al. (2024). Accordingly, they ask whether synchronization occurs for exponential $\varphi$. In the context of consensus for multi-agent control, Markdahl et al. (2018) show that for $d \geq 3$ (spheres), if the interaction graph is connected and $\varphi$ is increasing and convex, then the system synchronizes. What is the situation on circles ($d=2$)? First, we show that $\varphi$ being increasing and convex is no longer sufficient. Then we identify a new condition (that the Taylor coefficients of $\varphi'$ are decreasing) under which we do have synchronization on the circle. In so doing, we provide some answers to the open problems posed by Geshkovski et al. (2024).
We develop a monotone, two-scale discretization for a class of integrodifferential operators of order $2s$, $s \in (0,1)$. We apply it to develop numerical schemes, and convergence rates, for linear and obstacle problems governed by such operators. As applications of the monotonicity, we provide error estimates for free boundaries and a convergent numerical scheme for a concave fully nonlinear, nonlocal, problem.
For boundary value problem of an elliptic equation with variable coefficients describing the physical field distribution in inhomogeneous media, the Levi function can represent the solution in terms of volume and surface potentials, with the drawback that the volume potential involving in the solution expression requires heavy computational costs as well as the solvability of the integral equations with respect to the density pair. We introduce an modified integral expression for the solution to an elliptic equation in divergence form under the Levi function framework. The well-posedness of the linear integral system with respect to the density functions to be determined is rigorously proved. Based on the singularity decomposition for the Levi function, we propose two schemes to deal with the volume integrals so that the density functions can be solved efficiently. One method is an adaptive discretization scheme (ADS) for computing the integrals with continuous integrands, leading to the uniform accuracy of the integrals in the whole domain, and consequently the efficient computations for the density functions. The other method is the dual reciprocity method (DRM) which is a meshless approach converting the volume integrals into boundary integrals equivalently by expressing the volume density as the combination of the radial basis functions determined by the interior grids. The proposed schemes are justified numerically to be of satisfactory computation costs. Numerical examples in 2-dimensional and 3-dimensional cases are presented to show the validity of the proposed schemes.
A \emph{complete geometric graph} consists of a set $P$ of $n$ points in the plane, in general position, and all segments (edges) connecting them. It is a well known question of Bose, Hurtado, Rivera-Campo, and Wood, whether there exists a positive constant $c<1$, such that every complete geometric graph on $n$ points can be partitioned into at most $cn$ plane graphs (that is, noncrossing subgraphs). We answer this question in the affirmative in the special case where the underlying point set $P$ is \emph{dense}, which means that the ratio between the maximum and the minimum distances in $P$ is of the order of $\Theta(\sqrt{n})$.
We present a family of quantum stabilizer codes using the structure of duadic constacyclic codes over $\mathbb{F}_4$. Within this family, quantum codes can possess varying dimensions, and their minimum distances are lower bounded by a square root bound. For each fixed dimension, this allows us to construct an infinite sequence of binary quantum codes with a growing minimum distance. Additionally, we prove that this family of quantum codes includes an infinite subclass of degenerate codes. We also introduce a technique for extending splittings of duadic constacyclic codes, providing new insights into the minimum distance and minimum odd-like weight of specific duadic constacyclic codes. Finally, we provide numerical examples of some quantum codes with short lengths within this family.
We provide effective methods to construct and manipulate trilinear birational maps $\phi:(\mathbb{P}^1)^3\dashrightarrow \mathbb{P}^3$ by establishing a novel connection between birationality and tensor rank. These yield four families of nonlinear birational transformations between 3D spaces that can be operated with enough flexibility for applications in computer-aided geometric design. More precisely, we describe the geometric constraints on the defining control points of the map that are necessary for birationality, and present constructions for such configurations. For adequately constrained control points, we prove that birationality is achieved if and only if a certain $2\times 2\times 2$ tensor has rank one. As a corollary, we prove that the locus of weights that ensure birationality is $\mathbb{P}^1\times\mathbb{P}^1\times\mathbb{P}^1$. Additionally, we provide formulas for the inverse $\phi^{-1}$ as well as the explicit defining equations of the irreducible components of the base loci. Finally, we introduce a notion of "distance to birationality" for trilinear rational maps, and explain how to continuously deform birational maps.
We examine the consequences of having a total division operation $\frac{x}{y}$ on commutative rings. We consider two forms of binary division, one derived from a unary inverse, the other defined directly as a general operation; each are made total by setting $1/0$ equal to an error value $\bot$, which is added to the ring. Such totalised divisions we call common divisions. In a field the two forms are equivalent and we have a finite equational axiomatisation $E$ that is complete for the equational theory of fields equipped with common division, called common meadows. These equational axioms $E$ turn out to be true of commutative rings with common division but only when defined via inverses. We explore these axioms $E$ and their role in seeking a completeness theorem for the conditional equational theory of common meadows. We prove they are complete for the conditional equational theory of commutative rings with inverse based common division. By adding a new proof rule, we can prove a completeness theorem for the conditional equational theory of common meadows. Although, the equational axioms $E$ fail with common division defined directly, we observe that the direct division does satisfies the equations in $E$ under a new congruence for partial terms called eager equality.
Given a composite null $ \mathcal P$ and composite alternative $ \mathcal Q$, when and how can we construct a p-value whose distribution is exactly uniform under the null, and stochastically smaller than uniform under the alternative? Similarly, when and how can we construct an e-value whose expectation exactly equals one under the null, but its expected logarithm under the alternative is positive? We answer these basic questions, and other related ones, when $ \mathcal P$ and $ \mathcal Q$ are convex polytopes (in the space of probability measures). We prove that such constructions are possible if and only if $ \mathcal Q$ does not intersect the span of $ \mathcal P$. If the p-value is allowed to be stochastically larger than uniform under $P\in \mathcal P$, and the e-value can have expectation at most one under $P\in \mathcal P$, then it is achievable whenever $ \mathcal P$ and $ \mathcal Q$ are disjoint. More generally, even when $ \mathcal P$ and $ \mathcal Q$ are not polytopes, we characterize the existence of a bounded nontrivial e-variable whose expectation exactly equals one under any $P \in \mathcal P$. The proofs utilize recently developed techniques in simultaneous optimal transport. A key role is played by coarsening the filtration: sometimes, no such p-value or e-value exists in the richest data filtration, but it does exist in some reduced filtration, and our work provides the first general characterization of this phenomenon. We also provide an iterative construction that explicitly constructs such processes, and under certain conditions it finds the one that grows fastest under a specific alternative $Q$. We discuss implications for the construction of composite nonnegative (super)martingales, and end with some conjectures and open problems.