亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper revisits an adaptation of the random forest algorithm for Fr\'echet regression, addressing the challenge of regression in the context of random objects in metric spaces. Recognizing the limitations of previous approaches, we introduce a new splitting rule that circumvents the computationally expensive operation of Fr\'echet means by substituting with a medoid-based approach. We validate this approach by demonstrating its asymptotic equivalence to Fr\'echet mean-based procedures and establish the consistency of the associated regression estimator. The paper provides a sound theoretical framework and a more efficient computational approach to Fr\'echet regression, broadening its application to non-standard data types and complex use cases.

相關內容

指(zhi)的是利用多(duo)棵樹(shu)對樣本進行訓練并預測的一種分類(lei)器。

知識薈萃

精品入門(men)和進階教程、論文和代碼整理等

更多

查看相關VIP內容(rong)、論(lun)文、資(zi)訊(xun)等

The joint retrieval of surface reflectances and atmospheric parameters in VSWIR imaging spectroscopy is a computationally challenging high-dimensional problem. Using NASA's Surface Biology and Geology mission as the motivational context, the uncertainty associated with the retrievals is crucial for further application of the retrieved results for environmental applications. Although Markov chain Monte Carlo (MCMC) is a Bayesian method ideal for uncertainty quantification, the full-dimensional implementation of MCMC for the retrieval is computationally intractable. In this work, we developed a block Metropolis MCMC algorithm for the high-dimensional VSWIR surface reflectance retrieval that leverages the structure of the forward radiative transfer model to enable tractable fully Bayesian computation. We use the posterior distribution from this MCMC algorithm to assess the limitations of optimal estimation, the state-of-the-art Bayesian algorithm in operational retrievals which is more computationally efficient but uses a Gaussian approximation to characterize the posterior. Analyzing the differences in the posterior computed by each method, the MCMC algorithm was shown to give more physically sensible results and reveals the non-Gaussian structure of the posterior, specifically in the atmospheric aerosol optical depth parameter and the low-wavelength surface reflectances.

We provide the first convergence guarantees for the Consistency Models (CMs), a newly emerging type of one-step generative models that can generate comparable samples to those generated by Diffusion Models. Our main result is that, under the basic assumptions on score-matching errors, consistency errors and smoothness of the data distribution, CMs can efficiently sample from any realistic data distribution in one step with small $W_2$ error. Our results (1) hold for $L^2$-accurate score and consistency assumption (rather than $L^\infty$-accurate); (2) do note require strong assumptions on the data distribution such as log-Sobelev inequality; (3) scale polynomially in all parameters; and (4) match the state-of-the-art convergence guarantee for score-based generative models (SGMs). We also provide the result that the Multistep Consistency Sampling procedure can further reduce the error comparing to one step sampling, which support the original statement of "Consistency Models, Yang Song 2023". Our result further imply a TV error guarantee when take some Langevin-based modifications to the output distributions.

Relative perturbation theory for eigenvalues of Hermitian positive definite matrices has been well-studied, and the major results were later derived analogously for Hermitian non-singular matrices. In this dissertation we extend several relative perturbation results to Hermitian matrices that are potentially singular, and also develop a general class of relative bounds for Hermitian matrices. As a result, corresponding relative bounds for singular values of rank-deficient $m\times n$ matrices are also obtained using related Jordan-Wielandt matrices. We also discuss a comparison between the main relative bound derived and the Weyl's absolute perturbation bound in terms of their sharpness and derivation in practice.

The simple random walk on $\mathbb{Z}^p$ shows two drastically different behaviours depending on the value of $p$: it is recurrent when $p\in\{1,2\}$ while it escapes (with a rate increasing with $p$) as soon as $p\geq3$. This classical example illustrates that the asymptotic properties of a random walk provides some information on the structure of its state space. This paper aims to explore analogous questions on space made up of combinatorial objects with no algebraic structure. We take as a model for this problem the space of unordered unlabeled rooted trees endowed with Zhang edit distance. To this end, it defines the canonical unbiased random walk on the space of trees and provides an efficient algorithm to evaluate its escape rate. Compared to Zhang algorithm, it is incremental and computes the edit distance along the random walk approximately 100 times faster on trees of size $500$ on average. The escape rate of the random walk on trees is precisely estimated using intensive numerical simulations, out of reasonable reach without the incremental algorithm.

Two new omnibus tests of uniformity for data on the hypersphere are proposed. The new test statistics exploit closed-form expressions for orthogonal polynomials, feature tuning parameters, and are related to a "smooth maximum" function and the Poisson kernel. We obtain exact moments of the test statistics under uniformity and rotationally symmetric alternatives, and give their null asymptotic distributions. We consider approximate oracle tuning parameters that maximize the power of the tests against known generic alternatives and provide tests that estimate oracle parameters through cross-validated procedures while maintaining the significance level. Numerical experiments explore the effectiveness of null asymptotic distributions and the accuracy of inexpensive approximations of exact null distributions. A simulation study compares the powers of the new tests with other tests of the Sobolev class, showing the benefits of the former. The proposed tests are applied to the study of the (seemingly uniform) nursing times of wild polar bears.

Building on the success of PC-JeDi we introduce PC-Droid, a substantially improved diffusion model for the generation of jet particle clouds. By leveraging a new diffusion formulation, studying more recent integration solvers, and training on all jet types simultaneously, we are able to achieve state-of-the-art performance for all types of jets across all evaluation metrics. We study the trade-off between generation speed and quality by comparing two attention based architectures, as well as the potential of consistency distillation to reduce the number of diffusion steps. Both the faster architecture and consistency models demonstrate performance surpassing many competing models, with generation time up to two orders of magnitude faster than PC-JeDi and three orders of magnitude faster than Delphes.

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.

We consider two classes of natural stochastic processes on finite unlabeled graphs. These are Euclidean stochastic optimization algorithms on the adjacency matrix of weighted graphs and a modified version of the Metropolis MCMC algorithm on stochastic block models over unweighted graphs. In both cases we show that, as the size of the graph goes to infinity, the random trajectories of the stochastic processes converge to deterministic limits. These deterministic limits are curves on the space of measure-valued graphons. Measure-valued graphons, introduced by Lov\'{a}sz and Szegedy, are a refinement of the concept of graphons that can distinguish between two infinite exchangeable arrays that give rise to the same graphon limit. We introduce new metrics on this space which provide us with a natural notion of convergence for our limit theorems. This notion is equivalent to the convergence of infinite-exchangeable arrays. Under a suitable time-scaling, the Metropolis chain admits a diffusion limit as the number of vertices go to infinity. We then demonstrate that, in an appropriately formulated zero-noise limit, the stochastic process of adjacency matrices of this diffusion converge to a deterministic gradient flow curve on the space of graphons introduced in arXiv:2111.09459 [math.PR]. Under suitable assumptions, this allows us to estimate an exponential convergence rate for the Metropolis chain in a certain limiting regime. To the best of our knowledge, both the actual rate and the connection between a natural Metropolis chain commonly used in exponential random graph models and gradient flows on graphons are new in the literature.

We derive exact reconstruction methods for cracks consisting of unions of Lipschitz hypersurfaces in the context of Calder\'on's inverse conductivity problem. Our first method obtains upper bounds for the unknown cracks, bounds that can be shrunk to obtain the exact crack locations upon verifying certain operator inequalities for differences of the local Neumann-to-Dirichlet maps. This method can simultaneously handle perfectly insulating and perfectly conducting cracks, and it appears to be the first rigorous reconstruction method capable of this. Our second method assumes that only perfectly insulating cracks or only perfectly conducting cracks are present. Once more using operator inequalities, this method generates approximate cracks that are guaranteed to be subsets of the unknown cracks that are being reconstructed.

Clouds, especially low clouds, are crucial for regulating Earth's energy balance and mediating the response of the climate system to changes in greenhouse gas concentrations. Despite their importance for climate, they remain relatively poorly understood and are inaccurately represented in climate models. A principal reason is that the high computational expense of simulating them with large-eddy simulations (LES) has inhibited broad and systematic numerical experimentation and the generation of large datasets for training parametrization schemes for climate models. Here we demonstrate LES of low clouds on Tensor Processing Units (TPUs), application-specific integrated circuits that were originally developed for machine learning applications. We show that TPUs in conjunction with tailored software implementations can be used to simulate computationally challenging stratocumulus clouds in conditions observed during the Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) field study. The TPU-based LES code successfully reproduces clouds during DYCOMS and opens up the large computational resources available on TPUs to cloud simulations. The code enables unprecedented weak and strong scaling of LES, making it possible, for example, to simulate stratocumulus with $10\times$ speedup over real-time evolution in domains with a $34.7~\mathrm{km} \times 53.8~\mathrm{km}$ horizontal cross section. The results open up new avenues for computational experiments and for substantially enlarging the sample of LES available to train parameterizations of low clouds.

北京阿比特科技有限公司