亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider 3XOR games with perfect commuting operator strategies. Given any 3XOR game, we show existence of a perfect commuting operator strategy for the game can be decided in polynomial time. Previously this problem was not known to be decidable. Our proof leads to a construction, showing a 3XOR game has a perfect commuting operator strategy iff it has a perfect tensor product strategy using a 3 qubit (8 dimensional) GHZ state. This shows that for perfect 3XOR games the advantage of a quantum strategy over a classical strategy (defined by the quantum-classical bias ratio) is bounded. This is in contrast to the general 3XOR case where the optimal quantum strategies can require high dimensional states and there is no bound on the quantum advantage. To prove these results, we first show equivalence between deciding the value of an XOR game and solving an instance of the subgroup membership problem on a class of right angled Coxeter groups. We then show, in a proof that consumes most of this paper, that the instances of this problem corresponding to 3XOR games can be solved in polynomial time.

相關內容

In this study, we aim to enhance the arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization. We identify a previously overlooked objective of query dependency in such optimization and elucidate two ensuing challenges that impede the successful and economical design of prompt optimization techniques. One primary issue is the absence of an effective method to evaluate prompts during inference when the golden answer is unavailable. Concurrently, learning via interactions with the LLMs to navigate the expansive natural language prompting space proves to be resource-intensive. To address this, we introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data. Such data exists as by-products when diverse prompts are benchmarked on open-accessible datasets. With Prompt-OIRL, the query-dependent prompt optimization objective is achieved by first learning an offline reward model. This model can evaluate any query-prompt pairs without accessing LLMs. Subsequently, a best-of-N strategy is deployed to recommend the optimal prompt. Our experimental evaluations across various LLM scales and arithmetic reasoning datasets underscore both the efficacy and economic viability of the proposed approach.

Many individuals are likely to face a legal dispute at some point in their lives, but their lack of understanding of how to navigate these complex issues often renders them vulnerable. The advancement of natural language processing opens new avenues for bridging this legal literacy gap through the development of automated legal aid systems. However, existing legal question answering (LQA) approaches often suffer from a narrow scope, being either confined to specific legal domains or limited to brief, uninformative responses. In this work, we propose an end-to-end methodology designed to generate long-form answers to any statutory law questions, utilizing a "retrieve-then-read" pipeline. To support this approach, we introduce and release the Long-form Legal Question Answering (LLeQA) dataset, comprising 1,868 expert-annotated legal questions in the French language, complete with detailed answers rooted in pertinent legal provisions. Our experimental results demonstrate promising performance on automatic evaluation metrics, but a qualitative analysis uncovers areas for refinement. As one of the only comprehensive, expert-annotated long-form LQA dataset, LLeQA has the potential to not only accelerate research towards resolving a significant real-world issue, but also act as a rigorous benchmark for evaluating NLP models in specialized domains. We publicly release our code, data, and models.

We study 'Merlinized' versions of the recently defined Guided Local Hamiltonian problem, which we call 'Guidable Local Hamiltonian' problems. Unlike their guided counterparts, these problems do not have a guiding state provided as a part of the input, but merely come with the promise that one exists. We consider in particular two classes of guiding states: those that can be prepared efficiently by a quantum circuit; and those belonging to a class of quantum states we call classically evaluatable, for which it is possible to efficiently compute expectation values of local observables classically. We show that guidable local Hamiltonian problems for both classes of guiding states are $\mathsf{QCMA}$-complete in the inverse-polynomial precision setting, but lie within $\mathsf{NP}$ (or $\mathsf{NqP}$) in the constant precision regime when the guiding state is classically evaluatable. Our completeness results show that, from a complexity-theoretic perspective, classical Ans\"atze selected by classical heuristics are just as powerful as quantum Ans\"atze prepared by quantum heuristics, as long as one has access to quantum phase estimation. In relation to the quantum PCP conjecture, we (i) define a complexity class capturing quantum-classical probabilistically checkable proof systems and show that it is contained in $\mathsf{BQP}^{\mathsf{NP}[1]}$ for constant proof queries; (ii) give a no-go result on 'dequantizing' the known quantum reduction which maps a $\mathsf{QPCP}$-verification circuit to a local Hamiltonian with constant promise gap; (iii) give several no-go results for the existence of quantum gap amplification procedures that preserve certain ground state properties; and (iv) propose two conjectures that can be viewed as stronger versions of the NLTS theorem. Finally, we show that many of our results can be directly modified to obtain similar results for the class $\mathsf{MA}$.

Vanilla Reinforcement Learning (RL) can efficiently solve complex tasks but does not provide any guarantees on system behavior. To bridge this gap, we propose a three-step safe RL procedure for continuous action spaces that provides probabilistic guarantees with respect to temporal logic specifications. First, our approach probabilistically verifies a candidate controller with respect to a temporal logic specification while randomizing the control inputs to the system within a bounded set. Second, we improve the performance of this probabilistically verified controller by adding an RL agent that optimizes the verified controller for performance in the same bounded set around the control input. Third, we verify probabilistic safety guarantees with respect to temporal logic specifications for the learned agent. Our approach is efficiently implementable for continuous action and state spaces. The separation of safety verification and performance improvement into two distinct steps realizes both explicit probabilistic safety guarantees and a straightforward RL setup that focuses on performance. We evaluate our approach on an evasion task where a robot has to reach a goal while evading a dynamic obstacle with a specific maneuver. Our results show that our safe RL approach leads to efficient learning while maintaining its probabilistic safety specification.

Building teams and promoting collaboration are two very common business activities. An example of these are seen in the TeamingForFunding problem, where research institutions and researchers are interested to identify collaborative opportunities when applying to funding agencies in response to latter's calls for proposals. We describe a novel system to recommend teams using a variety of AI methods, such that (1) each team achieves the highest possible skill coverage that is demanded by the opportunity, and (2) the workload of distributing the opportunities is balanced amongst the candidate members. We address these questions by extracting skills latent in open data of proposal calls (demand) and researcher profiles (supply), normalizing them using taxonomies, and creating efficient algorithms that match demand to supply. We create teams to maximize goodness along a novel metric balancing short- and long-term objectives. We validate the success of our algorithms (1) quantitatively, by evaluating the recommended teams using a goodness score and find that more informed methods lead to recommendations of smaller number of teams but higher goodness, and (2) qualitatively, by conducting a large-scale user study at a college-wide level, and demonstrate that users overall found the tool very useful and relevant. Lastly, we evaluate our system in two diverse settings in US and India (of researchers and proposal calls) to establish generality of our approach, and deploy it at a major US university for routine use.

In this work we introduce the CitrusFarm dataset, a comprehensive multimodal sensory dataset collected by a wheeled mobile robot operating in agricultural fields. The dataset offers stereo RGB images with depth information, as well as monochrome, near-infrared and thermal images, presenting diverse spectral responses crucial for agricultural research. Furthermore, it provides a range of navigational sensor data encompassing wheel odometry, LiDAR, inertial measurement unit (IMU), and GNSS with Real-Time Kinematic (RTK) as the centimeter-level positioning ground truth. The dataset comprises seven sequences collected in three fields of citrus trees, featuring various tree species at different growth stages, distinctive planting patterns, as well as varying daylight conditions. It spans a total operation time of 1.7 hours, covers a distance of 7.5 km, and constitutes 1.3 TB of data. We anticipate that this dataset can facilitate the development of autonomous robot systems operating in agricultural tree environments, especially for localization, mapping and crop monitoring tasks. Moreover, the rich sensing modalities offered in this dataset can also support research in a range of robotics and computer vision tasks, such as place recognition, scene understanding, object detection and segmentation, and multimodal learning. The dataset, in conjunction with related tools and resources, is made publicly available at //github.com/UCR-Robotics/Citrus-Farm-Dataset.

Encompassing numerous nationwide, statewide, and institutional initiatives in the United States, provider profiling has evolved into a major health care undertaking with ubiquitous applications, profound implications, and high-stakes consequences. In line with such a significant profile, the literature has accumulated an enormous collection of articles dedicated to enhancing the statistical paradigm of provider profiling. Tackling wide-ranging profiling issues, these methods typically adjust for risk factors using linear predictors. While this simple approach generally leads to reasonable assessments, it can be too restrictive to characterize complex and dynamic factor-outcome associations in certain contexts. One such example arises from evaluating dialysis facilities treating Medicare beneficiaries having end-stage renal disease based on 30-day unplanned readmissions in 2020. In this context, the impact of in-hospital COVID-19 on the risk of readmission varied dramatically across pandemic phases. To efficiently capture the variation while profiling facilities, we develop a generalized partially linear model (GPLM) that incorporates a feedforward neural network. Considering provider-level clustering, we implement the GPLM as a stratified sampling-based stochastic optimization algorithm that features accelerated convergence. Furthermore, an exact test is designed to identify under and over-performing facilities, with an accompanying funnel plot visualizing profiling results. The advantages of the proposed methods are demonstrated through simulation experiments and the profiling of dialysis facilities using 2020 Medicare claims sourced from the United States Renal Data System.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司