亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rapid increase in the Internet of Things (IoT), the amount of data produced and processed is also increased. Cloud Computing facilitates the storage, processing, and analysis of data as needed. However, cloud computing devices are located far away from the IoT devices. Fog computing has emerged as a small cloud computing paradigm that is near to the edge devices and handles the task very efficiently. Fog nodes have a small storage capability than the cloud node but it is designed and deployed near to the edge device so that request must be accessed efficiently and executes in time. In this survey paper we have investigated and analysed the main challenges and issues raised in scheduling the task in fog computing environment. To the best of our knowledge there is no comprehensive survey paper on challenges in task scheduling of fog computing paradigm. In this survey paper research is conducted from 2018 to 2021 and most of the paper selection is done from 2020-2021. Moreover, this survey paper organizes the task scheduling approaches and technically plans the identified challenges and issues. Based on the identified issues, we have highlighted the future work directions in the field of task scheduling in fog computing environment.

相關內容

Context: The constant growth of primary evidence and Systematic Literature Reviews (SLRs) publications in the Software Engineering (SE) field leads to the need for SLR Updates. However, searching and selecting evidence for SLR updates demands significant effort from SE researchers. Objective: We present emerging results on an automated approach to support searching and selecting studies for SLR updates in SE. Method: We developed an automated tool prototype to perform the snowballing search technique and support selecting relevant studies for SLR updates using Machine Learning (ML) algorithms. We evaluated our automation proposition through a small-scale evaluation with a reliable dataset from an SLR replication and its update. Results: Effectively automating snowballing-based search strategies showed feasibility with minor losses, specifically related to papers without Digital Object Identifier (DOI). The ML algorithm giving the highest performance to select studies for SLR updates was Linear Support Vector Machine, with approximately 74% recall and 15% precision. Using such algorithms with conservative thresholds to minimize the risk of missing papers can significantly reduce evidence selection efforts. Conclusion: The preliminary results of our evaluation point in promising directions, indicating the potential of automating snowballing search efforts and of reducing the number of papers to be manually analyzed by about 2.5 times when selecting evidence for updating SLRs in SE.

The Internet of Things (IoT) is becoming a part of everyday life through its various sensing devices that collect valuable information. The huge number of interconnected heterogeneous IoT devices poses immense challenges, and network softwarization techniques are an adequate solution to these concerns. Software Defined Networking (SDN) and Network Function Virtualization (NFV) are two key softwarization techniques that enable the realization of efficient, agile IoT networks, especially when combined with Machine Learning (ML), mainly Federated Learning (FL). Unfortunately, existing solutions do not take advantage of such a combination to strengthen IoT networks in terms of efficiency and scalability. In this paper, we propose a novel architecture to achieve distributed intelligent network softwarization for IoT, in which SDN, NFV, and ML combine forces to enhance IoT constrained networks.

N:M Structured sparsity has garnered significant interest as a result of relatively modest overhead and improved efficiency. Additionally, this form of sparsity holds considerable appeal for reducing the memory footprint owing to their modest representation overhead. There have been efforts to develop training recipes for N:M structured sparsity, they primarily focus on low-sparsity regions ($\sim$50\%). Nonetheless, performance of models trained using these approaches tends to decline when confronted with high-sparsity regions ($>$80\%). In this work, we study the effectiveness of existing sparse training recipes at \textit{high-sparsity regions} and argue that these methods fail to sustain the model quality on par with low-sparsity regions. We demonstrate that the significant factor contributing to this disparity is the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate this undesirable effect, we employ decay mechanisms to progressively restrict the flow of gradients towards pruned elements. Our approach improves the model quality by up to 2$\%$ and 5$\%$ in vision and language models at high sparsity regime, respectively. We also evaluate the trade-off between model accuracy and training compute cost in terms of FLOPs. At iso-training FLOPs, our method yields better performance compared to conventional sparse training recipes, exhibiting an accuracy improvement of up to 2$\%$. The source code is available at //github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity.

Traditional Radiance Field (RF) representations capture details of a specific scene and must be trained afresh on each scene. Semantic feature fields have been added to RFs to facilitate several segmentation tasks. Generalised RF representations learn the principles of view interpolation. A generalised RF can render new views of an unknown and untrained scene, given a few views. We present a way to distil feature fields into the generalised GNT representation. Our GSN representation generates new views of unseen scenes on the fly along with consistent, per-pixel semantic features. This enables multi-view segmentation of arbitrary new scenes. We show different semantic features being distilled into generalised RFs. Our multi-view segmentation results are on par with methods that use traditional RFs. GSN closes the gap between standard and generalisable RF methods significantly. Project Page: //vinayak-vg.github.io/GSN/

Recently, increasing attention has been focused drawn on to improve the ability of Large Language Models (LLMs) to perform complex reasoning. However, previous methods, such as Chain-of-Thought and Self-Consistency, mainly follow Direct Reasoning (DR) frameworks, so they will meet difficulty in solving numerous real-world tasks which can hardly be solved via DR. Therefore, to strengthen the reasoning power of LLMs, this paper proposes a novel Indirect Reasoning (IR) method that employs the logic of contrapositives and contradictions to tackle IR tasks such as factual reasoning and mathematic proof. Specifically, our methodology comprises two steps. Firstly, we leverage the logical equivalence of contrapositive to augment the data and rules to enhance the comprehensibility of LLMs. Secondly, we design a set of prompt templates to trigger LLMs to conduct IR based on proof by contradiction that is logically equivalent to the original DR process. Our IR method is simple yet effective and can be straightforwardly integrated with existing DR methods to further boost the reasoning abilities of LLMs. The experimental results on popular LLMs, such as GPT-3.5-turbo and Gemini-pro, show that our IR method enhances the overall accuracy of factual reasoning by 27.33% and mathematical proof by 31.43%, when compared with traditional DR methods. Moreover, the methods combining IR and DR significantly outperform the methods solely using IR or DR, further demonstrating the effectiveness of our strategy.

The ability of Large Language Models (LLMs) to encode syntactic and semantic structures of language is well examined in NLP. Additionally, analogy identification, in the form of word analogies are extensively studied in the last decade of language modeling literature. In this work we specifically look at how LLMs' abilities to capture sentence analogies (sentences that convey analogous meaning to each other) vary with LLMs' abilities to encode syntactic and semantic structures of sentences. Through our analysis, we find that LLMs' ability to identify sentence analogies is positively correlated with their ability to encode syntactic and semantic structures of sentences. Specifically, we find that the LLMs which capture syntactic structures better, also have higher abilities in identifying sentence analogies.

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司