亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is challenging to quantify numerical preferences for different objectives in a multi-objective decision-making problem. However, the demonstrations of a user are often accessible. We propose an algorithm to infer linear preference weights from either optimal or near-optimal demonstrations. The algorithm is evaluated in three environments with two baseline methods. Empirical results demonstrate significant improvements compared to the baseline algorithms, in terms of both time requirements and accuracy of the inferred preferences. In future work, we plan to evaluate the algorithm's effectiveness in a multi-agent system, where one of the agents is enabled to infer the preferences of an opponent using our preference inference algorithm.

相關內容

In this paper, we develop an {\em epsilon admissible subsets} (EAS) model selection approach for performing group variable selection in the high-dimensional multivariate regression setting. This EAS strategy is designed to estimate a posterior-like, generalized fiducial distribution over a parsimonious class of models in the setting of correlated predictors and/or in the absence of a sparsity assumption. The effectiveness of our approach, to this end, is demonstrated empirically in simulation studies, and is compared to other state-of-the-art model/variable selection procedures. Furthermore, assuming a matrix-Normal linear model we show that the EAS strategy achieves {\em strong model selection consistency} in the high-dimensional setting if there does exist a sparse, true data generating set of predictors. In contrast to Bayesian approaches for model selection, our generalized fiducial approach completely avoids the problem of simultaneously having to specify arbitrary prior distributions for model parameters and penalize model complexity; our approach allows for inference directly on the model complexity. \textcolor{black}{Implementation of the method is illustrated through yeast data to identify significant cell-cycle regulating transcription factors.

Researchers have integrated exploration techniques into multi-agent reinforcement learning (MARL) algorithms, drawing on their remarkable success in deep reinforcement learning. Nonetheless, exploration in MARL presents a more substantial challenge, as agents need to coordinate their efforts in order to achieve comprehensive state coverage. Reaching a unanimous agreement on which kinds of states warrant exploring can be a struggle for agents in this context. We introduce \textbf{M}ulti-agent \textbf{E}xploration based on \textbf{S}ub-state \textbf{E}ntropy (MESE) to address this limitation. This novel approach incentivizes agents to explore states cooperatively by directing them to achieve consensus via an extra team reward. Calculating the additional reward is based on the novelty of the current sub-state that merits cooperative exploration. MESE employs a conditioned entropy approach to select the sub-state, using particle-based entropy estimation to calculate the entropy. MESE is a plug-and-play module that can be seamlessly integrated into most existing MARL algorithms, which makes it a highly effective tool for reinforcement learning. Our experiments demonstrate that MESE can substantially improve the MAPPO's performance on various tasks in the StarCraft multi-agent challenge (SMAC).

Navigating safely and efficiently in dense and heterogeneous traffic scenarios is challenging for autonomous vehicles (AVs) due to their inability to infer the behaviors or intentions of nearby drivers. In this work, we propose a distributed multi-agent reinforcement learning (MARL) algorithm with trajectory and intent prediction in dense and heterogeneous traffic scenarios. Our approach for intent-aware planning, iPLAN, allows agents to infer nearby drivers' intents solely from their local observations. We model two distinct incentives for agents' strategies: Behavioral incentives for agents' long-term planning based on their driving behavior or personality; Instant incentives for agents' short-term planning for collision avoidance based on the current traffic state. We design a two-stream inference module that allows agents to infer their opponents' incentives and incorporate their inferred information into decision-making. We perform experiments on two simulation environments, Non-Cooperative Navigation and Heterogeneous Highway. In Heterogeneous Highway, results show that, compared with centralized MARL baselines such as QMIX and MAPPO, our method yields a 4.0% and 35.7% higher episodic reward in mild and chaotic traffic, with 48.1% higher success rate and 80.6% longer survival time in chaotic traffic. We also compare with a decentralized baseline IPPO and demonstrate a higher episodic reward of 9.2% and 10.3% in mild traffic and chaotic traffic, 25.3% higher success rate, and 13.7% longer survival time.

We study a structured multi-agent multi-armed bandit (MAMAB) problem in a dynamic environment. A graph reflects the information-sharing structure among agents, and the arms' reward distributions are piecewise-stationary with several unknown change points. The agents face the identical piecewise-stationary MAB problem. The goal is to develop a decision-making policy for the agents that minimizes the regret, which is the expected total loss of not playing the optimal arm at each time step. Our proposed solution, Restarted Bayesian Online Change Point Detection in Cooperative Upper Confidence Bound Algorithm (RBO-Coop-UCB), involves an efficient multi-agent UCB algorithm as its core enhanced with a Bayesian change point detector. We also develop a simple restart decision cooperation that improves decision-making. Theoretically, we establish that the expected group regret of RBO-Coop-UCB is upper bounded by $\mathcal{O}(KNM\log T + K\sqrt{MT\log T})$, where K is the number of agents, M is the number of arms, and T is the number of time steps. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed method outperforms the state-of-the-art algorithms.

Learning in MDPs with highly complex state representations is currently possible due to multiple advancements in reinforcement learning algorithm design. However, this incline in complexity, and furthermore the increase in the dimensions of the observation came at the cost of volatility that can be taken advantage of via adversarial attacks (i.e. moving along worst-case directions in the observation space). To solve this policy instability problem we propose a novel method to detect the presence of these non-robust directions via local quadratic approximation of the deep neural policy loss. Our method provides a theoretical basis for the fundamental cut-off between safe observations and adversarial observations. Furthermore, our technique is computationally efficient, and does not depend on the methods used to produce the worst-case directions. We conduct extensive experiments in the Arcade Learning Environment with several different adversarial attack techniques. Most significantly, we demonstrate the effectiveness of our approach even in the setting where non-robust directions are explicitly optimized to circumvent our proposed method.

Multi-stage ranking pipelines have become widely used strategies in modern recommender systems, where the final stage aims to return a ranked list of items that balances a number of requirements such as user preference, diversity, novelty etc. Linear scalarization is arguably the most widely used technique to merge multiple requirements into one optimization objective, by summing up the requirements with certain preference weights. Existing final-stage ranking methods often adopt a static model where the preference weights are determined during offline training and kept unchanged during online serving. Whenever a modification of the preference weights is needed, the model has to be re-trained, which is time and resources inefficient. Meanwhile, the most appropriate weights may vary greatly for different groups of targeting users or at different time periods (e.g., during holiday promotions). In this paper, we propose a framework called controllable multi-objective re-ranking (CMR) which incorporates a hypernetwork to generate parameters for a re-ranking model according to different preference weights. In this way, CMR is enabled to adapt the preference weights according to the environment changes in an online manner, without retraining the models. Moreover, we classify practical business-oriented tasks into four main categories and seamlessly incorporate them in a new proposed re-ranking model based on an Actor-Evaluator framework, which serves as a reliable real-world testbed for CMR. Offline experiments based on the dataset collected from Taobao App showed that CMR improved several popular re-ranking models by using them as underlying models. Online A/B tests also demonstrated the effectiveness and trustworthiness of CMR.

The proliferation of automated data collection schemes and the advances in sensorics are increasing the amount of data we are able to monitor in real-time. However, given the high annotation costs and the time required by quality inspections, data is often available in an unlabeled form. This is fostering the use of active learning for the development of soft sensors and predictive models. In production, instead of performing random inspections to obtain product information, labels are collected by evaluating the information content of the unlabeled data. Several query strategy frameworks for regression have been proposed in the literature but most of the focus has been dedicated to the static pool-based scenario. In this work, we propose a new strategy for the stream-based scenario, where instances are sequentially offered to the learner, which must instantaneously decide whether to perform the quality check to obtain the label or discard the instance. The approach is inspired by the optimal experimental design theory and the iterative aspect of the decision-making process is tackled by setting a threshold on the informativeness of the unlabeled data points. The proposed approach is evaluated using numerical simulations and the Tennessee Eastman Process simulator. The results confirm that selecting the examples suggested by the proposed algorithm allows for a faster reduction in the prediction error.

System logs play a critical role in maintaining the reliability of software systems. Fruitful studies have explored automatic log-based anomaly detection and achieved notable accuracy on benchmark datasets. However, when applied to large-scale cloud systems, these solutions face limitations due to high resource consumption and lack of adaptability to evolving logs. In this paper, we present an accurate, lightweight, and adaptive log-based anomaly detection framework, referred to as SeaLog. Our method introduces a Trie-based Detection Agent (TDA) that employs a lightweight, dynamically-growing trie structure for real-time anomaly detection. To enhance TDA's accuracy in response to evolving log data, we enable it to receive feedback from experts. Interestingly, our findings suggest that contemporary large language models, such as ChatGPT, can provide feedback with a level of consistency comparable to human experts, which can potentially reduce manual verification efforts. We extensively evaluate SeaLog on two public datasets and an industrial dataset. The results show that SeaLog outperforms all baseline methods in terms of effectiveness, runs 2X to 10X faster and only consumes 5% to 41% of the memory resource.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

北京阿比特科技有限公司