We give an $n^{O(\log\log n)}$-time membership query algorithm for properly and agnostically learning decision trees under the uniform distribution over $\{\pm 1\}^n$. Even in the realizable setting, the previous fastest runtime was $n^{O(\log n)}$, a consequence of a classic algorithm of Ehrenfeucht and Haussler. Our algorithm shares similarities with practical heuristics for learning decision trees, which we augment with additional ideas to circumvent known lower bounds against these heuristics. To analyze our algorithm, we prove a new structural result for decision trees that strengthens a theorem of O'Donnell, Saks, Schramm, and Servedio. While the OSSS theorem says that every decision tree has an influential variable, we show how every decision tree can be "pruned" so that every variable in the resulting tree is influential.
Despite rapid progress in theoretical reinforcement learning (RL) over the last few years, most of the known guarantees are worst-case in nature, failing to take advantage of structure that may be known a priori about a given RL problem at hand. In this paper we address the question of whether worst-case lower bounds for regret in online learning of Markov decision processes (MDPs) can be circumvented when information about the MDP, in the form of predictions about its optimal $Q$-value function, is given to the algorithm. We show that when the predictions about the optimal $Q$-value function satisfy a reasonably weak condition we call distillation, then we can improve regret bounds by replacing the set of state-action pairs with the set of state-action pairs on which the predictions are grossly inaccurate. This improvement holds for both uniform regret bounds and gap-based ones. Further, we are able to achieve this property with an algorithm that achieves sublinear regret when given arbitrary predictions (i.e., even those which are not a distillation). Our work extends a recent line of work on algorithms with predictions, which has typically focused on simple online problems such as caching and scheduling, to the more complex and general problem of reinforcement learning.
We investigate the classical active pure exploration problem in Markov Decision Processes, where the agent sequentially selects actions and, from the resulting system trajectory, aims at identifying the best policy as fast as possible. We propose a problem-dependent lower bound on the average number of steps required before a correct answer can be given with probability at least $1-\delta$. We further provide the first algorithm with an instance-specific sample complexity in this setting. This algorithm addresses the general case of communicating MDPs; we also propose a variant with a reduced exploration rate (and hence faster convergence) under an additional ergodicity assumption. This work extends previous results relative to the \emph{generative setting}~\cite{pmlr-v139-marjani21a}, where the agent could at each step query the random outcome of any (state, action) pair. In contrast, we show here how to deal with the \emph{navigation constraints}, induced by the \emph{online setting}. Our analysis relies on an ergodic theorem for non-homogeneous Markov chains which we consider of wide interest in the analysis of Markov Decision Processes.
We consider learning the structures of Gaussian latent tree models with vector observations when a subset of them are arbitrarily corrupted. First, we present the sample complexities of Recursive Grouping (RG) and Chow-Liu Recursive Grouping (CLRG) without the assumption that the effective depth is bounded in the number of observed nodes, significantly generalizing the results in Choi et al. (2011). We show that Chow-Liu initialization in CLRG greatly reduces the sample complexity of RG from being exponential in the diameter of the tree to only logarithmic in the diameter for the hidden Markov model (HMM). Second, we robustify RG, CLRG, Neighbor Joining (NJ) and Spectral NJ (SNJ) by using the truncated inner product. These robustified algorithms can tolerate a number of corruptions up to the square root of the number of clean samples. Finally, we derive the first known instance-dependent impossibility result for structure learning of latent trees. The optimalities of the robust version of CLRG and NJ are verified by comparing their sample complexities and the impossibility result.
We consider off-policy evaluation of dynamic treatment rules under the assumption that the underlying system can be modeled as a partially observed Markov decision process (POMDP). We propose an estimator, partial history importance weighting, and show that it can consistently estimate the stationary mean rewards of a target policy given long enough draws from the behavior policy. Furthermore, we establish an upper bound on its error that decays polynomially in the number of observations (i.e., the number of trajectories times their length), with an exponent that depends on the overlap of the target and behavior policies, and on the mixing time of the underlying system. We also establish a polynomial minimax lower bound for off-policy evaluation under the POMDP assumption, and show that its exponent has the same qualitative dependence on overlap and mixing time as obtained in our upper bound. Together, our upper and lower bounds imply that off-policy evaluation in POMDPs is strictly harder than off-policy evaluation in (fully observed) Markov decision processes, but strictly easier than model-free off-policy evaluation.
Stimulated by practical applications arising from viral marketing. This paper investigates a novel Budgeted $k$-Submodular Maximization problem defined as follows: Given a finite set $V$, a budget $B$ and a $k$-submodular function $f: (k+1)^V \mapsto \mathbb{R}_+$, the problem asks to find a solution $\s=(S_1, S_2, \ldots, S_k)$, each element $e \in V$ has a cost $c_i(e)$ to be put into $i$-th set $S_i$, with the total cost of $s$ does not exceed $B$ so that $f(\s)$ is maximized. To address this problem, we propose two streaming algorithms that provide approximation guarantees for the problem. In particular, in the case of each element $e$ has the same cost for all $i$-th sets, we propose a deterministic streaming algorithm which provides an approximation ratio of $\frac{1}{4}-\epsilon$ when $f$ is monotone and $\frac{1}{5}-\epsilon$ when $f$ is non-monotone. For the general case, we propose a random streaming algorithm that provides an approximation ratio of $\min\{\frac{\alpha}{2}, \frac{(1-\alpha)k}{(1+\beta)k-\beta} \}-\epsilon$ when $f$ is monotone and $\min\{\frac{\alpha}{2}, \frac{(1-\alpha)k}{(1+2\beta)k-2\beta} \}-\epsilon$ when $f$ is non-monotone in expectation, where $\beta=\max_{e\in V, i , j \in [k], i\neq j} \frac{c_i(e)}{c_j(e)}$ and $\epsilon, \alpha$ are fixed inputs.
Recent advances in mobile health (mHealth) technology provide an effective way to monitor individuals' health statuses and deliver just-in-time personalized interventions. However, the practical use of mHealth technology raises unique challenges to existing methodologies on learning an optimal dynamic treatment regime. Many mHealth applications involve decision-making with large numbers of intervention options and under an infinite time horizon setting where the number of decision stages diverges to infinity. In addition, temporary medication shortages may cause optimal treatments to be unavailable, while it is unclear what alternatives can be used. To address these challenges, we propose a Proximal Temporal consistency Learning (pT-Learning) framework to estimate an optimal regime that is adaptively adjusted between deterministic and stochastic sparse policy models. The resulting minimax estimator avoids the double sampling issue in the existing algorithms. It can be further simplified and can easily incorporate off-policy data without mismatched distribution corrections. We study theoretical properties of the sparse policy and establish finite-sample bounds on the excess risk and performance error. The proposed method is implemented by our proximalDTR package and is evaluated through extensive simulation studies and the OhioT1DM mHealth dataset.
Learning a graph topology to reveal the underlying relationship between data entities plays an important role in various machine learning and data analysis tasks. Under the assumption that structured data vary smoothly over a graph, the problem can be formulated as a regularised convex optimisation over a positive semidefinite cone and solved by iterative algorithms. Classic methods require an explicit convex function to reflect generic topological priors, e.g. the $\ell_1$ penalty for enforcing sparsity, which limits the flexibility and expressiveness in learning rich topological structures. We propose to learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O). Specifically, our model first unrolls an iterative primal-dual splitting algorithm into a neural network. The key structural proximal projection is replaced with a variational autoencoder that refines the estimated graph with enhanced topological properties. The model is trained in an end-to-end fashion with pairs of node data and graph samples. Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties.
The difficulty in specifying rewards for many real-world problems has led to an increased focus on learning rewards from human feedback, such as demonstrations. However, there are often many different reward functions that explain the human feedback, leaving agents with uncertainty over what the true reward function is. While most policy optimization approaches handle this uncertainty by optimizing for expected performance, many applications demand risk-averse behavior. We derive a novel policy gradient-style robust optimization approach, PG-BROIL, that optimizes a soft-robust objective that balances expected performance and risk. To the best of our knowledge, PG-BROIL is the first policy optimization algorithm robust to a distribution of reward hypotheses which can scale to continuous MDPs. Results suggest that PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse and outperforms state-of-the-art imitation learning algorithms when learning from ambiguous demonstrations by hedging against uncertainty, rather than seeking to uniquely identify the demonstrator's reward function.
Methods proposed in the literature towards continual deep learning typically operate in a task-based sequential learning setup. A sequence of tasks is learned, one at a time, with all data of current task available but not of previous or future tasks. Task boundaries and identities are known at all times. This setup, however, is rarely encountered in practical applications. Therefore we investigate how to transform continual learning to an online setup. We develop a system that keeps on learning over time in a streaming fashion, with data distributions gradually changing and without the notion of separate tasks. To this end, we build on the work on Memory Aware Synapses, and show how this method can be made online by providing a protocol to decide i) when to update the importance weights, ii) which data to use to update them, and iii) how to accumulate the importance weights at each update step. Experimental results show the validity of the approach in the context of two applications: (self-)supervised learning of a face recognition model by watching soap series and learning a robot to avoid collisions.
This paper proposes a model-free Reinforcement Learning (RL) algorithm to synthesise policies for an unknown Markov Decision Process (MDP), such that a linear time property is satisfied. We convert the given property into a Limit Deterministic Buchi Automaton (LDBA), then construct a synchronized MDP between the automaton and the original MDP. According to the resulting LDBA, a reward function is then defined over the state-action pairs of the product MDP. With this reward function, our algorithm synthesises a policy whose traces satisfies the linear time property: as such, the policy synthesis procedure is "constrained" by the given specification. Additionally, we show that the RL procedure sets up an online value iteration method to calculate the maximum probability of satisfying the given property, at any given state of the MDP - a convergence proof for the procedure is provided. Finally, the performance of the algorithm is evaluated via a set of numerical examples. We observe an improvement of one order of magnitude in the number of iterations required for the synthesis compared to existing approaches.