亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider off-policy evaluation of dynamic treatment rules under the assumption that the underlying system can be modeled as a partially observed Markov decision process (POMDP). We propose an estimator, partial history importance weighting, and show that it can consistently estimate the stationary mean rewards of a target policy given long enough draws from the behavior policy. Furthermore, we establish an upper bound on its error that decays polynomially in the number of observations (i.e., the number of trajectories times their length), with an exponent that depends on the overlap of the target and behavior policies, and on the mixing time of the underlying system. We also establish a polynomial minimax lower bound for off-policy evaluation under the POMDP assumption, and show that its exponent has the same qualitative dependence on overlap and mixing time as obtained in our upper bound. Together, our upper and lower bounds imply that off-policy evaluation in POMDPs is strictly harder than off-policy evaluation in (fully observed) Markov decision processes, but strictly easier than model-free off-policy evaluation.

相關內容

We consider nonparametric invariant density and drift estimation for a class of multidimensional degenerate resp. hypoelliptic diffusion processes, so-called stochastic damping Hamiltonian systems or kinetic diffusions, under anisotropic smoothness assumptions on the unknown functions. The analysis is based on continuous observations of the process, and the estimators' performance is measured in terms of the sup-norm loss. Regarding invariant density estimation, we obtain highly nonclassical results for the rate of convergence, which reflect the inhomogeneous variance structure of the process. Concerning estimation of the drift vector, we suggest both non-adaptive and fully data-driven procedures. All of the aforementioned results strongly rely on tight uniform moment bounds for empirical processes associated to deterministic and stochastic integrals of the investigated process, which are also proven in this paper.

As one of the solutions to the decentralized partially observable Markov decision process (Dec-POMDP) problems, the value decomposition method has achieved significant results recently. However, most value decomposition methods require the fully observable state of the environment during training, but this is not feasible in some scenarios where only incomplete and noisy observations can be obtained. Therefore, we propose a novel value decomposition framework, named State Inference for value DEcomposition (SIDE), which eliminates the need to know the global state by simultaneously seeking solutions to the two problems of optimal control and state inference. SIDE can be extended to any value decomposition method to tackle partially observable problems. By comparing with the performance of different algorithms in StarCraft II micromanagement tasks, we verified that though without accessible states, SIDE can infer the current state that contributes to the reinforcement learning process based on past local observations and even achieve superior results to many baselines in some complex scenarios.

In this paper we present a novel method for learning hierarchical representations of Markov decision processes. Our method works by partitioning the state space into subsets, and defines subtasks for performing transitions between the partitions. We formulate the problem of partitioning the state space as an optimization problem that can be solved using gradient descent given a set of sampled trajectories, making our method suitable for high-dimensional problems with large state spaces. We empirically validate the method, by showing that it can successfully learn a useful hierarchical representation in a navigation domain. Once learned, the hierarchical representation can be used to solve different tasks in the given domain, thus generalizing knowledge across tasks.

Offline estimation of the dynamical model of a Markov Decision Process (MDP) is a non-trivial task that greatly depends on the data available to the learning phase. Sometimes the dynamics of the model is invariant with respect to some transformations of the current state and action. Recent works showed that an expert-guided pipeline relying on Density Estimation methods as Deep Neural Network based Normalizing Flows effectively detects this structure in deterministic environments, both categorical and continuous-valued. The acquired knowledge can be exploited to augment the original data set, leading eventually to a reduction in the distributional shift between the true and the learnt model. In this work we extend the paradigm to also tackle non deterministic MDPs, in particular 1) we propose a detection threshold in categorical environments based on statistical distances, 2) we introduce a benchmark of the distributional shift in continuous environments based on the Wilcoxon signed-rank statistical test and 3) we show that the former results lead to a performance improvement when solving the learnt MDP and then applying the optimal policy in the real environment.

In the functional linear regression model, many methods have been proposed and studied to estimate the slope function while the functional predictor was observed in the entire domain. However, works on functional linear regression models with partially observed trajectories have received less attention. In this paper, to fill the literature gap we consider the scenario where individual functional predictor may be observed only on part of the domain. Depending on whether measurement error is presented in functional predictors, two methods are developed, one is based on linear functionals of the observed part of the trajectory and the other one uses conditional principal component scores. We establish the asymptotic properties of the two proposed methods. Finite sample simulations are conducted to verify their performance. Diffusion tensor imaging (DTI) data from Alzheimer's Disease Neuroimaging Initiative (ADNI) study is analyzed.

We consider the challenge of policy simplification and verification in the context of policies learned through reinforcement learning (RL) in continuous environments. In well-behaved settings, RL algorithms have convergence guarantees in the limit. While these guarantees are valuable, they are insufficient for safety-critical applications. Furthermore, they are lost when applying advanced techniques such as deep-RL. To recover guarantees when applying advanced RL algorithms to more complex environments with (i) reachability, (ii) safety-constrained reachability, or (iii) discounted-reward objectives, we build upon the DeepMDP framework introduced by Gelada et al. to derive new bisimulation bounds between the unknown environment and a learned discrete latent model of it. Our bisimulation bounds enable the application of formal methods for Markov decision processes. Finally, we show how one can use a policy obtained via state-of-the-art RL to efficiently train a variational autoencoder that yields a discrete latent model with provably approximately correct bisimulation guarantees. Additionally, we obtain a distilled version of the policy for the latent model.

We consider an extension to the restless multi-armed bandit (RMAB) problem with unknown arm dynamics, where an unknown exogenous global Markov process governs the rewards distribution of each arm. Under each global state, the rewards process of each arm evolves according to an unknown Markovian rule, which is non-identical among different arms. At each time, a player chooses an arm out of $N$ arms to play, and receives a random reward from a finite set of reward states. The arms are restless, that is, their local state evolves regardless of the player's actions. Motivated by recent studies on related RMAB settings, the regret is defined as the reward loss with respect to a player that knows the dynamics of the problem, and plays at each time $t$ the arm that maximizes the expected immediate value. The objective is to develop an arm-selection policy that minimizes the regret. To that end, we develop the Learning under Exogenous Markov Process (LEMP) algorithm. We analyze LEMP theoretically and establish a finite-sample bound on the regret. We show that LEMP achieves a logarithmic regret order with time. We further analyze LEMP numerically and present simulation results that support the theoretical findings and demonstrate that LEMP significantly outperforms alternative algorithms.

Reinforcement learning (RL) is a central problem in artificial intelligence. This problem consists of defining artificial agents that can learn optimal behaviour by interacting with an environment -- where the optimal behaviour is defined with respect to a reward signal that the agent seeks to maximize. Reward machines (RMs) provide a structured, automata-based representation of a reward function that enables an RL agent to decompose an RL problem into structured subproblems that can be efficiently learned via off-policy learning. Here we show that RMs can be learned from experience, instead of being specified by the user, and that the resulting problem decomposition can be used to effectively solve partially observable RL problems. We pose the task of learning RMs as a discrete optimization problem where the objective is to find an RM that decomposes the problem into a set of subproblems such that the combination of their optimal memoryless policies is an optimal policy for the original problem. We show the effectiveness of this approach on three partially observable domains, where it significantly outperforms A3C, PPO, and ACER, and discuss its advantages, limitations, and broader potential.

The difficulty in specifying rewards for many real-world problems has led to an increased focus on learning rewards from human feedback, such as demonstrations. However, there are often many different reward functions that explain the human feedback, leaving agents with uncertainty over what the true reward function is. While most policy optimization approaches handle this uncertainty by optimizing for expected performance, many applications demand risk-averse behavior. We derive a novel policy gradient-style robust optimization approach, PG-BROIL, that optimizes a soft-robust objective that balances expected performance and risk. To the best of our knowledge, PG-BROIL is the first policy optimization algorithm robust to a distribution of reward hypotheses which can scale to continuous MDPs. Results suggest that PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse and outperforms state-of-the-art imitation learning algorithms when learning from ambiguous demonstrations by hedging against uncertainty, rather than seeking to uniquely identify the demonstrator's reward function.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

北京阿比特科技有限公司