亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Exercise-induced fatigue resulting from physical activity can be an early indicator of overtraining, illness, or other health issues. In this article, we present an automated method for estimating exercise-induced fatigue levels through the use of thermal imaging and facial analysis techniques utilizing deep learning models. Leveraging a novel dataset comprising over 400,000 thermal facial images of rested and fatigued users, our results suggest that exercise-induced fatigue levels could be predicted with only one static thermal frame with an average error smaller than 15\%. The results emphasize the viability of using thermal imaging in conjunction with deep learning for reliable exercise-induced fatigue estimation.

相關內容

The automatic discovery of a model to represent the history of encounters of a group of patients with the healthcare system -- the so-called "pathway of patients" -- is a new field of research that supports clinical and organisational decisions to improve the quality and efficiency of the treatment provided. The pathways of patients with chronic conditions tend to vary significantly from one person to another, have repetitive tasks, and demand the analysis of multiple perspectives (interventions, diagnoses, medical specialities, among others) influencing the results. Therefore, modelling and mining those pathways is still a challenging task. In this work, we propose a framework comprising: (i) a pathway model based on a multi-aspect graph, (ii) a novel dissimilarity measurement to compare pathways taking the elapsed time into account, and (iii) a mining method based on traditional centrality measures to discover the most relevant steps of the pathways. We evaluated the framework using the study cases of pregnancy and diabetes, which revealed its usefulness in finding clusters of similar pathways, representing them in an easy-to-interpret way, and highlighting the most significant patterns according to multiple perspectives.

Difference-in-differences (DID) is a popular approach to identify the causal effects of treatments and policies in the presence of unmeasured confounding. DID identifies the sample average treatment effect in the treated (SATT). However, a goal of such research is often to inform decision-making in target populations outside the treated sample. Transportability methods have been developed to extend inferences from study samples to external target populations; these methods have primarily been developed and applied in settings where identification is based on conditional independence between the treatment and potential outcomes, such as in a randomized trial. This paper develops identification and estimators for effects in a target population, based on DID conducted in a study sample that differs from the target population. We present a range of assumptions under which one may identify causal effects in the target population and employ causal diagrams to illustrate these assumptions. In most realistic settings, results depend critically on the assumption that any unmeasured confounders are not effect measure modifiers on the scale of the effect of interest. We develop several estimators of transported effects, including a doubly robust estimator based on the efficient influence function. Simulation results support theoretical properties of the proposed estimators. We discuss the potential application of our approach to a study of the effects of a US federal smoke-free housing policy, where the original study was conducted in New York City alone and the goal is extend inferences to other US cities.

The processing and analysis of computed tomography (CT) imaging is important for both basic scientific development and clinical applications. In AutoCT, we provide a comprehensive pipeline that integrates an end-to-end automatic preprocessing, registration, segmentation, and quantitative analysis of 3D CT scans. The engineered pipeline enables atlas-based CT segmentation and quantification leveraging diffeomorphic transformations through efficient forward and inverse mappings. The extracted localized features from the deformation field allow for downstream statistical learning that may facilitate medical diagnostics. On a lightweight and portable software platform, AutoCT provides a new toolkit for the CT imaging community to underpin the deployment of artificial intelligence-driven applications.

Bayesian optimal design of experiments is a well-established approach to planning experiments. Briefly, a probability distribution, known as a statistical model, for the responses is assumed which is dependent on a vector of unknown parameters. A utility function is then specified which gives the gain in information for estimating the true value of the parameters using the Bayesian posterior distribution. A Bayesian optimal design is given by maximising the expectation of the utility with respect to the joint distribution given by the statistical model and prior distribution for the true parameter values. The approach takes account of the experimental aim via specification of the utility and of all assumed sources of uncertainty via the expected utility. However, it is predicated on the specification of the statistical model. Recently, a new type of statistical inference, known as Gibbs (or General Bayesian) inference, has been advanced. This is Bayesian-like, in that uncertainty on unknown quantities is represented by a posterior distribution, but does not necessarily rely on specification of a statistical model. Thus the resulting inference should be less sensitive to misspecification of the statistical model. The purpose of this paper is to propose Gibbs optimal design: a framework for optimal design of experiments for Gibbs inference. The concept behind the framework is introduced along with a computational approach to find Gibbs optimal designs in practice. The framework is demonstrated on exemplars including linear models, and experiments with count and time-to-event responses.

In recent years, research interest in personalised treatments has been growing. However, treatment effect heterogeneity and possibly time-varying treatment effects are still often overlooked in clinical studies. Statistical tools are needed for the identification of treatment response patterns, taking into account that treatment response is not constant over time. We aim to provide an innovative method to obtain dynamic treatment effect phenotypes on a time-to-event outcome, conditioned on a set of relevant effect modifiers. The proposed method does not require the assumption of proportional hazards for the treatment effect, which is rarely realistic. We propose a spline-based survival neural network, inspired by the Royston-Parmar survival model, to estimate time-varying conditional treatment effects. We then exploit the functional nature of the resulting estimates to apply a functional clustering of the treatment effect curves in order to identify different patterns of treatment effects. The application that motivated this work is the discontinuation of treatment with Mineralocorticoid receptor Antagonists (MRAs) in patients with heart failure, where there is no clear evidence as to which patients it is the safest choice to discontinue treatment and, conversely, when it leads to a higher risk of adverse events. The data come from an electronic health record database. A simulation study was performed to assess the performance of the spline-based neural network and the stability of the treatment response phenotyping procedure. In light of the results, the suggested approach has the potential to support personalized medical choices by assessing unique treatment responses in various medical contexts over a period of time.

When multiple self-adaptive systems share the same environment and have common goals, they may coordinate their adaptations at runtime to avoid conflicts and to satisfy their goals. There are two approaches to coordination. (1) Logically centralized, where a supervisor has complete control over the individual self-adaptive systems. Such approach is infeasible when the systems have different owners or administrative domains. (2) Logically decentralized, where coordination is achieved through direct interactions. Because the individual systems have control over the information they share, decentralized coordination accommodates multiple administrative domains. However, existing techniques do not account simultaneously for both local concerns, e.g., preferences, and shared concerns, e.g., conflicts, which may lead to goals not being achieved as expected. Our idea to address this shortcoming is to express both types of concerns within the same constraint optimization problem. We propose CoADAPT, a decentralized coordination technique introducing two types of constraints: preference constraints, expressing local concerns, and consistency constraints, expressing shared concerns. At runtime, the problem is solved in a decentralized way using distributed constraint optimization algorithms implemented by each self-adaptive system. As a first step in realizing CoADAPT, we focus in this work on the coordination of adaptation planning strategies, traditionally addressed only with centralized techniques. We show the feasibility of CoADAPT in an exemplar from cloud computing and analyze experimentally its scalability.

Reinforcement learning suffers from limitations in real practices primarily due to the numbers of required interactions with virtual environments. It results in a challenging problem that we are implausible to obtain an optimal strategy only with a few attempts for many learning method. Hereby, we design an improved reinforcement learning method based on model predictive control that models the environment through a data-driven approach. Based on learned environmental model, it performs multi-step prediction to estimate the value function and optimize the policy. The method demonstrates higher learning efficiency, faster convergent speed of strategies tending to the optimal value, and fewer sample capacity space required by experience replay buffers. Experimental results, both in classic databases and in a dynamic obstacle avoidance scenario for unmanned aerial vehicle, validate the proposed approaches.

In the present era of sustainable innovation, the circular economy paradigm dictates the optimal use and exploitation of existing finite resources. At the same time, the transition to smart infrastructures requires considerable investment in capital, resources and people. In this work, we present a general machine learning approach for offering indoor location awareness without the need to invest in additional and specialised hardware. We explore use cases where visitors equipped with their smart phone would interact with the available WiFi infrastructure to estimate their location, since the indoor requirement poses a limitation to standard GPS solutions. Results have shown that the proposed approach achieves a less than 2m accuracy and the model is resilient even in the case where a substantial number of BSSIDs are dropped.

Structured reinforcement learning leverages policies with advantageous properties to reach better performance, particularly in scenarios where exploration poses challenges. We explore this field through the concept of orchestration, where a (small) set of expert policies guides decision-making; the modeling thereof constitutes our first contribution. We then establish value-functions regret bounds for orchestration in the tabular setting by transferring regret-bound results from adversarial settings. We generalize and extend the analysis of natural policy gradient in Agarwal et al. [2021, Section 5.3] to arbitrary adversarial aggregation strategies. We also extend it to the case of estimated advantage functions, providing insights into sample complexity both in expectation and high probability. A key point of our approach lies in its arguably more transparent proofs compared to existing methods. Finally, we present simulations for a stochastic matching toy model.

Confounder selection, namely choosing a set of covariates to control for confounding between a treatment and an outcome, is arguably the most important step in the design of observational studies. Previous methods, such as Pearl's celebrated back-door criterion, typically require pre-specifying a causal graph, which can often be difficult in practice. We propose an interactive procedure for confounder selection that does not require pre-specifying the graph or the set of observed variables. This procedure iteratively expands the causal graph by finding what we call "primary adjustment sets" for a pair of possibly confounded variables. This can be viewed as inverting a sequence of latent projections of the underlying causal graph. Structural information in the form of primary adjustment sets is elicited from the user, bit by bit, until either a set of covariates are found to control for confounding or it can be determined that no such set exists. Other information, such as the causal relations between confounders, is not required by the procedure. We show that if the user correctly specifies the primary adjustment sets in every step, our procedure is both sound and complete.

北京阿比特科技有限公司