In recent years, research interest in personalised treatments has been growing. However, treatment effect heterogeneity and possibly time-varying treatment effects are still often overlooked in clinical studies. Statistical tools are needed for the identification of treatment response patterns, taking into account that treatment response is not constant over time. We aim to provide an innovative method to obtain dynamic treatment effect phenotypes on a time-to-event outcome, conditioned on a set of relevant effect modifiers. The proposed method does not require the assumption of proportional hazards for the treatment effect, which is rarely realistic. We propose a spline-based survival neural network, inspired by the Royston-Parmar survival model, to estimate time-varying conditional treatment effects. We then exploit the functional nature of the resulting estimates to apply a functional clustering of the treatment effect curves in order to identify different patterns of treatment effects. The application that motivated this work is the discontinuation of treatment with Mineralocorticoid receptor Antagonists (MRAs) in patients with heart failure, where there is no clear evidence as to which patients it is the safest choice to discontinue treatment and, conversely, when it leads to a higher risk of adverse events. The data come from an electronic health record database. A simulation study was performed to assess the performance of the spline-based neural network and the stability of the treatment response phenotyping procedure. In light of the results, the suggested approach has the potential to support personalized medical choices by assessing unique treatment responses in various medical contexts over a period of time.
Due to their intrinsic capabilities on parallel signal processing, optical neural networks (ONNs) have attracted extensive interests recently as a potential alternative to electronic artificial neural networks (ANNs) with reduced power consumption and low latency. Preliminary confirmation of the parallelism in optical computing has been widely done by applying the technology of wavelength division multiplexing (WDM) in the linear transformation part of neural networks. However, inter-channel crosstalk has obstructed WDM technologies to be deployed in nonlinear activation in ONNs. Here, we propose a universal WDM structure called multiplexed neuron sets (MNS) which apply WDM technologies to optical neurons and enable ONNs to be further compressed. A corresponding back-propagation (BP) training algorithm is proposed to alleviate or even cancel the influence of inter-channel crosstalk on MNS-based WDM-ONNs. For simplicity, semiconductor optical amplifiers (SOAs) are employed as an example of MNS to construct a WDM-ONN trained with the new algorithm. The result shows that the combination of MNS and the corresponding BP training algorithm significantly downsize the system and improve the energy efficiency to tens of times while giving similar performance to traditional ONNs.
Influenced mixed moving average fields are a versatile modeling class for spatio-temporal data. However, their predictive distribution is not generally known. Under this modeling assumption, we define a novel spatio-temporal embedding and a theory-guided machine learning approach that employs a generalized Bayesian algorithm to make ensemble forecasts. We employ Lipschitz predictors and determine fixed-time and any-time PAC Bayesian bounds in the batch learning setting. Performing causal forecast is a highlight of our methodology as its potential application to data with spatial and temporal short and long-range dependence. We then test the performance of our learning methodology by using linear predictors and data sets simulated from a spatio-temporal Ornstein-Uhlenbeck process.
Cognitive Radio Network (CRN) provides effective capabilities for resource allocation with the valuable spectrum resources in the network. It provides the effective allocation of resources to the unlicensed users or Secondary Users (SUs) to access the spectrum those are unused by the licensed users or Primary Users (Pus). This paper develops an Optimal Relay Selection scheme with the spectrum-sharing scheme in CRN. The proposed Cross-Layer Spider Swarm Shifting is implemented in CRN for the optimal relay selection with Spider Swarm Optimization (SSO). The shortest path is estimated with the data shifting model for the data transmission path in the CRN. This study examines a cognitive relay network (CRN) with interference restrictions imposed by a mobile end user (MU). Half-duplex communication is used in the proposed system model between a single primary user (PU) and a single secondary user (SU). Between the SU source and SU destination, an amplify and forward (AF) relaying mechanism is also used. While other nodes (SU Source, SU relays, and PU) are supposed to be immobile in this scenario, the mobile end user (SU destination) is assumed to travel at high vehicle speeds. The suggested method achieves variety by placing a selection combiner at the SU destination and dynamically selecting the optimal relay for transmission based on the greatest signal-to-noise (SNR) ratio. The performance of the proposed Cross-Layer Spider Swarm Shifting model is compared with the Spectrum Sharing Optimization with QoS Guarantee (SSO-QG). The comparative analysis expressed that the proposed Cross-Layer Spider Swarm Shifting model delay is reduced by 15% compared with SSO-QG. Additionally, the proposed Cross-Layer Spider Swarm Shifting exhibits the improved network performance of ~25% higher throughput compared with SSO-QG.
Background: The detection and extraction of causality from natural language sentences have shown great potential in various fields of application. The field of requirements engineering is eligible for multiple reasons: (1) requirements artifacts are primarily written in natural language, (2) causal sentences convey essential context about the subject of requirements, and (3) extracted and formalized causality relations are usable for a (semi-)automatic translation into further artifacts, such as test cases. Objective: We aim at understanding the value of interactive causality extraction based on syntactic criteria for the context of requirements engineering. Method: We developed a prototype of a system for automatic causality extraction and evaluate it by applying it to a set of publicly available requirements artifacts, determining whether the automatic extraction reduces the manual effort of requirements formalization. Result: During the evaluation we analyzed 4457 natural language sentences from 18 requirements documents, 558 of which were causal (12.52%). The best evaluation of a requirements document provided an automatic extraction of 48.57% cause-effect graphs on average, which demonstrates the feasibility of the approach. Limitation: The feasibility of the approach has been proven in theory but lacks exploration of being scaled up for practical use. Evaluating the applicability of the automatic causality extraction for a requirements engineer is left for future research. Conclusion: A syntactic approach for causality extraction is viable for the context of requirements engineering and can aid a pipeline towards an automatic generation of further artifacts from requirements artifacts.
Model reduction is the construction of simple yet predictive descriptions of the dynamics of many-body systems in terms of a few relevant variables. A prerequisite to model reduction is the identification of these relevant variables, a task for which no general method exists. Here, we develop a systematic approach based on the information bottleneck to identify the relevant variables, defined as those most predictive of the future. We elucidate analytically the relation between these relevant variables and the eigenfunctions of the transfer operator describing the dynamics. Further, we show that in the limit of high compression, the relevant variables are directly determined by the slowest-decaying eigenfunctions. Our information-based approach indicates when to optimally stop increasing the complexity of the reduced model. Further, it provides a firm foundation to construct interpretable deep learning tools that perform model reduction. We illustrate how these tools work on benchmark dynamical systems and deploy them on uncurated datasets, such as satellite movies of atmospheric flows downloaded directly from YouTube.
We adopt the integral definition of the fractional Laplace operator and study an optimal control problem on Lipschitz domains that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We develop two finite element discretization strategies: a semidiscrete scheme in which the control variable is not discretized, and a fully discrete scheme in which the control variable is discretized with piecewise constant functions. For both schemes, we analyze the convergence properties of discretizations and derive error estimates.
Estimating the prevalence of a medical condition, or the proportion of the population in which it occurs, is a fundamental problem in healthcare and public health. Accurate estimates of the relative prevalence across groups -- capturing, for example, that a condition affects women more frequently than men -- facilitate effective and equitable health policy which prioritizes groups who are disproportionately affected by a condition. However, it is difficult to estimate relative prevalence when a medical condition is underreported. In this work, we provide a method for accurately estimating the relative prevalence of underreported medical conditions, building upon the positive unlabeled learning framework. We show that under the commonly made covariate shift assumption -- i.e., that the probability of having a disease conditional on symptoms remains constant across groups -- we can recover the relative prevalence, even without restrictive assumptions commonly made in positive unlabeled learning and even if it is impossible to recover the absolute prevalence. We conduct experiments on synthetic and real health data which demonstrate our method's ability to recover the relative prevalence more accurately than do baselines, and demonstrate the method's robustness to plausible violations of the covariate shift assumption. We conclude by illustrating the applicability of our method to case studies of intimate partner violence and hate speech.
There are various applications, where companies need to decide to which individuals they should best allocate treatment. To support such decisions, uplift models are applied to predict treatment effects on an individual level. Based on the predicted treatment effects, individuals can be ranked and treatment allocation can be prioritized according to this ranking. An implicit assumption, which has not been doubted in the previous uplift modeling literature, is that this treatment prioritization approach tends to bring individuals with high treatment effects to the top and individuals with low treatment effects to the bottom of the ranking. In our research, we show that heteroskedastictity in the training data can cause a bias of the uplift model ranking: individuals with the highest treatment effects can get accumulated in large numbers at the bottom of the ranking. We explain theoretically how heteroskedasticity can bias the ranking of uplift models and show this process in a simulation and on real-world data. We argue that this problem of ranking bias due to heteroskedasticity might occur in many real-world applications and requires modification of the treatment prioritization to achieve an efficient treatment allocation.
We investigate long-term cognitive effects of an intervention, where systolic blood pressure (sBP) is monitored at more optimal levels, in a large representative sample. A limitation with previous research on the potential risk reduction of such interventions is that they do not properly account for the reduction of mortality rates. Hence, one can only speculate whether the effect is a result from changes in cognition or changes in mortality. As such, we extend previous research by providing both an etiological and a prognostic effect estimate. To do this we propose a Bayesian semi-parametric estimation approach for an incremental intervention, using the extended G-formula. We also introduce a novel sparsity-inducing Dirichlet hyperprior for longitudinal data, demonstrate the usefulness of our approach in simulations, and compare the performance relative to other Bayesian decision tree ensemble approaches. In our study, there were no significant prognostic- or etiological effects across all ages, indicating that sBP interventions likely do not have a strong effect on memory neither at the population level nor at the individual level.
We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.