亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we prove Poincar\'e inequalities for the Discrete de Rham (DDR) sequence on a general connected polyhedral domain $\Omega$ of $\mathbb{R}^3$. We unify the ideas behind the inequalities for all three operators in the sequence, deriving new proofs for the Poincar\'e inequalities for the gradient and the divergence, and extending the available Poincar\'e inequality for the curl to domains with arbitrary second Betti numbers. A key preliminary step consists in deriving "mimetic" Poincar\'e inequalities giving the existence and stability of the solutions to topological balance problems useful in general discrete geometric settings. As an example of application, we study the stability of a novel DDR scheme for the magnetostatics problem on domains with general topology.

相關內容

We introduce exploration via linear loss perturbations (EVILL), a randomised exploration method for structured stochastic bandit problems that works by solving for the minimiser of a linearly perturbed regularised negative log-likelihood function. We show that, for the case of generalised linear bandits, EVILL reduces to perturbed history exploration (PHE), a method where exploration is done by training on randomly perturbed rewards. In doing so, we provide a simple and clean explanation of when and why random reward perturbations give rise to good bandit algorithms. With the data-dependent perturbations we propose, not present in previous PHE-type methods, EVILL is shown to match the performance of Thompson-sampling-style parameter-perturbation methods, both in theory and in practice. Moreover, we show an example outside of generalised linear bandits where PHE leads to inconsistent estimates, and thus linear regret, while EVILL remains performant. Like PHE, EVILL can be implemented in just a few lines of code.

Despite making significant progress in multi-modal tasks, current Multi-modal Large Language Models (MLLMs) encounter the significant challenge of hallucination, which may lead to harmful consequences. Therefore, evaluating MLLMs' hallucinations is becoming increasingly important in model improvement and practical application deployment. Previous works are limited in high evaluation costs (e.g., relying on humans or advanced LLMs) and insufficient evaluation dimensions (e.g., types of hallucination and task). In this paper, we propose an LLM-free multi-dimensional benchmark AMBER, which can be used to evaluate both generative task and discriminative task including object existence, object attribute and object relation hallucination. Based on AMBER, we design a low-cost and efficient evaluation pipeline. Additionally, we conduct a comprehensive evaluation and detailed analysis of mainstream MLLMs including GPT-4V(ision), and also give guideline suggestions for mitigating hallucinations. The data and code of AMBER are available at //github.com/junyangwang0410/AMBER.

We present in this paper a family of generalized simultaneous perturbation-based gradient search (GSPGS) estimators that use noisy function measurements. The number of function measurements required by each estimator is guided by the desired level of accuracy. We first present in detail unbalanced generalized simultaneous perturbation stochastic approximation (GSPSA) estimators and later present the balanced versions (B-GSPSA) of these. We extend this idea further and present the generalized smoothed functional (GSF) and generalized random directions stochastic approximation (GRDSA) estimators, respectively, as well as their balanced variants. We show that estimators within any specified class requiring more number of function measurements result in lower estimator bias. We present a detailed analysis of both the asymptotic and non-asymptotic convergence of the resulting stochastic approximation schemes. We further present a series of experimental results with the various GSPGS estimators on the Rastrigin and quadratic function objectives. Our experiments are seen to validate our theoretical findings.

Given a graph G and a query vertex q, the topic of community search (CS), aiming to retrieve a dense subgraph of G containing q, has gained much attention. Most existing works focus on undirected graphs which overlooks the rich information carried by the edge directions. Recently, the problem of community search over directed graphs (or CSD problem) has been studied; it finds a connected subgraph containing q, where the in-degree and out-degree of each vertex within the subgraph are at least k and l, respectively. However, existing solutions are inefficient, especially on large graphs. To tackle this issue, in this paper, we propose a novel index called D-Forest, which allows a CSD query to be completed within the optimal time cost. We further propose efficient index construction methods. Extensive experiments on six real large graphs show that our index-based query algorithm is up to two orders of magnitude faster than existing solutions.

This paper presents the reduced biquaternion mixed least squares and total least squares (RBMTLS) method for solving an overdetermined system $AX \approx B$ in the reduced biquaternion algebra. The RBMTLS method is suitable when matrix $B$ and a few columns of matrix $A$ contain errors. By examining real representations of reduced biquaternion matrices, we investigate the conditions for the existence and uniqueness of the real RBMTLS solution and derive an explicit expression for the real RBMTLS solution. The proposed technique covers two special cases: the reduced biquaternion total least squares (RBTLS) method and the reduced biquaternion least squares (RBLS) method. Furthermore, the developed method is also used to find the best approximate solution to $AX \approx B$ over a complex field. Lastly, a numerical example is presented to support our findings.

In this paper, we develop an arbitrary-order locking-free enriched Galerkin method for the linear elasticity problem using the stress-displacement formulation in both two and three dimensions. The method is based on the mixed discontinuous Galerkin method in [30], but with a different stress approximation space that enriches the arbitrary order continuous Galerkin space with some piecewise symmetric-matrix valued polynomials. We prove that the method is well-posed and provide a parameter-robust error estimate, which confirms the locking-free property of the EG method. We present some numerical examples in two and three dimensions to demonstrate the effectiveness of the proposed method.

We consider the problem of solving a family of parametric mixed-integer linear optimization problems where some entries in the input data change. We introduce the concept of cutting-plane layer (CPL), i.e., a differentiable cutting-plane generator mapping the problem data and previous iterates to cutting planes. We propose a CPL implementation to generate split cuts, and by combining several CPLs, we devise a differentiable cutting-plane algorithm that exploits the repeated nature of parametric instances. In an offline phase, we train our algorithm by updating the internal parameters controlling the CPLs, thus altering cut generation. Once trained, our algorithm computes, with predictable execution times and a fixed number of cuts, solutions with low integrality gaps. Preliminary computational tests show that our algorithm generalizes on unseen instances and captures underlying parametric structures.

We consider the general problem of Bayesian binary regression and we introduce a new class of distributions, the Perturbed Unified Skew Normal (pSUN, henceforth), which generalizes the Unified Skew-Normal (SUN) class. We show that the new class is conjugate to any binary regression model, provided that the link function may be expressed as a scale mixture of Gaussian densities. We discuss in detail the popular logit case, and we show that, when a logistic regression model is combined with a Gaussian prior, posterior summaries such as cumulants and normalizing constants can be easily obtained through the use of an importance sampling approach, opening the way to straightforward variable selection procedures. For more general priors, the proposed methodology is based on a simple Gibbs sampler algorithm. We also claim that, in the p > n case, the proposed methodology shows better performances - both in terms of mixing and accuracy - compared to the existing methods. We illustrate the performance through several simulation studies and two data analyses.

We propose a way to split a given bivariate P-recursive sequence into a summable part and a non-summable part in such a way that the non-summable part is minimal in some sense. This decomposition gives rise to a new reduction-based creative telescoping algorithm based on the concept of integral bases.

Gradient clipping is a popular modification to standard (stochastic) gradient descent, at every iteration limiting the gradient norm to a certain value $c >0$. It is widely used for example for stabilizing the training of deep learning models (Goodfellow et al., 2016), or for enforcing differential privacy (Abadi et al., 2016). Despite popularity and simplicity of the clipping mechanism, its convergence guarantees often require specific values of $c$ and strong noise assumptions. In this paper, we give convergence guarantees that show precise dependence on arbitrary clipping thresholds $c$ and show that our guarantees are tight with both deterministic and stochastic gradients. In particular, we show that (i) for deterministic gradient descent, the clipping threshold only affects the higher-order terms of convergence, (ii) in the stochastic setting convergence to the true optimum cannot be guaranteed under the standard noise assumption, even under arbitrary small step-sizes. We give matching upper and lower bounds for convergence of the gradient norm when running clipped SGD, and illustrate these results with experiments.

北京阿比特科技有限公司