This paper addresses different aspects of "coupled" model descriptions in computational electromagnetics. This includes domain decomposition, multiscale problems, multiple or hybrid discrete field formulation and multi-physics problems. Theoretical issues of accuracy, stability and numerical efficiency of the resulting formulations are addressed along with advantages and disadvantages of the various approaches. Examples for multi-method, multi-domain, multi-formulation and multi-physics coupled formulations stem from numerical testing of electromagnetic compatibility in complex scenarios and numerical dosimetry of biological organisms in electromagnetic exposure situations and from simulations of large systems in electromagnetic power transmission.
Many major questions in the theory of evolutionary dynamics can in a meaningful sense be mapped to analyses of stochastic trajectories in game theoretic contexts. Often the approach is to analyze small numbers of distinct populations and/or to assume dynamics occur within a regime of population sizes large enough that deterministic trajectories are an excellent approximation of reality. The addition of ecological factors, termed "eco-evolutionary dynamics", further complicates the dynamics and results in many problems which are intractable or impractically messy for current theoretical methods. However, an analogous but underexplored approach is to analyze these systems with an eye primarily towards uncertainty in the models themselves. In the language of researchers in Reinforcement Learning and adjacent fields, a Partially Observable Markov Process. Here we introduce a duality which maps the complexity of accounting for both ecology and individual genotypic/phenotypic types onto a problem of accounting solely for underlying information-theoretic computations rather than drawing physical boundaries which do not change the computations. Armed with this equivalence between computation and the relevant biophysics, which we term Taak-duality, we attack the problem of "directed evolution" in the form of a Partially Observable Markov Decision Process. This provides a tractable case of studying eco-evolutionary trajectories of a highly general type, and of analyzing questions of potential limits on the efficiency of evolution in the directed case.
NASA's Solar Dynamics Observatory (SDO) mission gathers 1.4 terabytes of data each day from its geosynchronous orbit in space. SDO data includes images of the Sun captured at different wavelengths, with the primary scientific goal of understanding the dynamic processes governing the Sun. Recently, end-to-end optimized artificial neural networks (ANN) have shown great potential in performing image compression. ANN-based compression schemes have outperformed conventional hand-engineered algorithms for lossy and lossless image compression. We have designed an ad-hoc ANN-based image compression scheme to reduce the amount of data needed to be stored and retrieved on space missions studying solar dynamics. In this work, we propose an attention module to make use of both local and non-local attention mechanisms in an adversarially trained neural image compression network. We have also demonstrated the superior perceptual quality of this neural image compressor. Our proposed algorithm for compressing images downloaded from the SDO spacecraft performs better in rate-distortion trade-off than the popular currently-in-use image compression codecs such as JPEG and JPEG2000. In addition we have shown that the proposed method outperforms state-of-the art lossy transform coding compression codec, i.e., BPG.
Metaheuristics are widely recognized gradient-free solvers to hard problems that do not meet the rigorous mathematical assumptions of conventional solvers. The automated design of metaheuristic algorithms provides an attractive path to relieve manual design effort and gain enhanced performance beyond human-made algorithms. However, the specific algorithm prototype and linear algorithm representation in the current automated design pipeline restrict the design within a fixed algorithm structure, which hinders discovering novelties and diversity across the metaheuristic family. To address this challenge, this paper proposes a general framework, AutoOpt, for automatically designing metaheuristic algorithms with diverse structures. AutoOpt contains three innovations: (i) A general algorithm prototype dedicated to covering the metaheuristic family as widely as possible. It promotes high-quality automated design on different problems by fully discovering potentials and novelties across the family. (ii) A directed acyclic graph algorithm representation to fit the proposed prototype. Its flexibility and evolvability enable discovering various algorithm structures in a single run of design, thus boosting the possibility of finding high-performance algorithms. (iii) A graph representation embedding method offering an alternative compact form of the graph to be manipulated, which ensures AutoOpt's generality. Experiments on numeral functions and real applications validate AutoOpt's efficiency and practicability.
Precise calibration is the basis for the vision-guided robot system to achieve high-precision operations. Systems with multiple eyes (cameras) and multiple hands (robots) are particularly sensitive to calibration errors, such as micro-assembly systems. Most existing methods focus on the calibration of a single unit of the whole system, such as poses between hand and eye, or between two hands. These methods can be used to determine the relative pose between each unit, but the serialized incremental calibration strategy cannot avoid the problem of error accumulation in a large-scale system. Instead of focusing on a single unit, this paper models the multi-eye and multi-hand system calibration problem as a graph and proposes a method based on the minimum spanning tree and graph optimization. This method can automatically plan the serialized optimal calibration strategy in accordance with the system settings to get coarse calibration results initially. Then, with these initial values, the closed-loop constraints are introduced to carry out global optimization. Simulation experiments demonstrate the performance of the proposed algorithm under different noises and various hand-eye configurations. In addition, experiments on real robot systems are presented to further verify the proposed method.
Weather is one of the main problems in implementing forecasts for photovoltaic panel systems. Since it is the main generator of disturbances and interruptions in electrical energy. It is necessary to choose a reliable forecasting model for better energy use. A measurement prototype was constructed in this work, which collects in-situ voltage and current measurements and the environmental factors of radiation, temperature, and humidity. Subsequently, a correlation analysis of the variables and the implementation of artificial neural networks were performed to perform the system forecast. The best estimate was the one made with three variables (lighting, temperature, and humidity), obtaining an error of 0.255. These results show that it is possible to make a good estimate for a photovoltaic panel system.
Deep learning-based approaches have produced models with good insect classification accuracy; Most of these models are conducive for application in controlled environmental conditions. One of the primary emphasis of researchers is to implement identification and classification models in the real agriculture fields, which is challenging because input images that are wildly out of the distribution (e.g., images like vehicles, animals, humans, or a blurred image of an insect or insect class that is not yet trained on) can produce an incorrect insect classification. Out-of-distribution (OOD) detection algorithms provide an exciting avenue to overcome these challenge as it ensures that a model abstains from making incorrect classification prediction of non-insect and/or untrained insect class images. We generate and evaluate the performance of state-of-the-art OOD algorithms on insect detection classifiers. These algorithms represent a diversity of methods for addressing an OOD problem. Specifically, we focus on extrusive algorithms, i.e., algorithms that wrap around a well-trained classifier without the need for additional co-training. We compared three OOD detection algorithms: (i) Maximum Softmax Probability, which uses the softmax value as a confidence score, (ii) Mahalanobis distance-based algorithm, which uses a generative classification approach; and (iii) Energy-Based algorithm that maps the input data to a scalar value, called energy. We performed an extensive series of evaluations of these OOD algorithms across three performance axes: (a) \textit{Base model accuracy}: How does the accuracy of the classifier impact OOD performance? (b) How does the \textit{level of dissimilarity to the domain} impact OOD performance? and (c) \textit{Data imbalance}: How sensitive is OOD performance to the imbalance in per-class sample size?
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.