An increasing number of systems are being designed by first gathering significant amounts of data, and then optimizing the system parameters directly using the obtained data. Often this is done without analyzing the dataset structure. As task complexity, data size, and parameters all increase to millions or even billions, data summarization is becoming a major challenge. In this work, we investigate data summarization via dictionary learning, leveraging the properties of recently introduced non-negative kernel regression (NNK) graphs. Our proposed NNK-Means, unlike competing techniques, such askSVD, learns geometric dictionaries with atoms that lie in the input data space. Experiments show that summaries using NNK-Meanscan provide better discrimination compared to linear and kernel versions of kMeans and kSVD. Moreover, NNK-Means has a scalable implementation, with runtime complexity similar to that of kMeans.
We introduce a procedure for conditional density estimation under logarithmic loss, which we call SMP (Sample Minmax Predictor). This estimator minimizes a new general excess risk bound for statistical learning. On standard examples, this bound scales as $d/n$ with $d$ the model dimension and $n$ the sample size, and critically remains valid under model misspecification. Being an improper (out-of-model) procedure, SMP improves over within-model estimators such as the maximum likelihood estimator, whose excess risk degrades under misspecification. Compared to approaches reducing to the sequential problem, our bounds remove suboptimal $\log n$ factors and can handle unbounded classes. For the Gaussian linear model, the predictions and risk bound of SMP are governed by leverage scores of covariates, nearly matching the optimal risk in the well-specified case without conditions on the noise variance or approximation error of the linear model. For logistic regression, SMP provides a non-Bayesian approach to calibration of probabilistic predictions relying on virtual samples, and can be computed by solving two logistic regressions. It achieves a non-asymptotic excess risk of $O((d + B^2R^2)/n)$, where $R$ bounds the norm of features and $B$ that of the comparison parameter; by contrast, no within-model estimator can achieve better rate than $\min({B R}/{\sqrt{n}}, {d e^{BR}}/{n} )$ in general. This provides a more practical alternative to Bayesian approaches, which require approximate posterior sampling, thereby partly addressing a question raised by Foster et al. (2018).
Deep learning has brought the most profound contribution towards biomedical image segmentation to automate the process of delineation in medical imaging. To accomplish such task, the models are required to be trained using huge amount of annotated or labelled data that highlights the region of interest with a binary mask. However, efficient generation of the annotations for such huge data requires expert biomedical analysts and extensive manual effort. It is a tedious and expensive task, while also being vulnerable to human error. To address this problem, a self-supervised learning framework, BT-Unet is proposed that uses the Barlow Twins approach to pre-train the encoder of a U-Net model via redundancy reduction in an unsupervised manner to learn data representation. Later, complete network is fine-tuned to perform actual segmentation. The BT-Unet framework can be trained with a limited number of annotated samples while having high number of unannotated samples, which is mostly the case in real-world problems. This framework is validated over multiple U-Net models over diverse datasets by generating scenarios of a limited number of labelled samples using standard evaluation metrics. With exhaustive experiment trials, it is observed that the BT-Unet framework enhances the performance of the U-Net models with significant margin under such circumstances.
Many learning tasks require observing a sequence of images and making a decision. In a transportation problem of designing and planning for shipping boxes between nodes, we show how to treat the network of nodes and the flows between them as images. These images have useful structural information that can be statistically summarized. Using image compression techniques, we reduce an image down to a set of numbers that contain interpretable geographic information that we call geographic signatures. Using geographic signatures, we learn network structure that can be utilized to recommend future network connectivity. We develop a Bayesian reinforcement algorithm that takes advantage of statistically summarized network information as priors and user-decisions to reinforce an agent's probabilistic decision.
A main difficulty in actuarial claim size modeling is that there is no simple off-the-shelf distribution that simultaneously provides a good distributional model for the main body and the tail of the data. In particular, covariates may have different effects for small and for large claim sizes. To cope with this problem, we introduce a deep composite regression model whose splicing point is given in terms of a quantile of the conditional claim size distribution rather than a constant. To facilitate M-estimation for such models, we introduce and characterize the class of strictly consistent scoring functions for the triplet consisting a quantile, as well as the lower and upper expected shortfall beyond that quantile. In a second step, this elicitability result is applied to fit deep neural network regression models. We demonstrate the applicability of our approach and its superiority over classical approaches on a real accident insurance data set.
Automatically recommending relevant law articles to a given legal case has attracted much attention as it can greatly release human labor from searching over the large database of laws. However, current researches only support coarse-grained recommendation where all relevant articles are predicted as a whole without explaining which specific fact each article is relevant with. Since one case can be formed of many supporting facts, traversing over them to verify the correctness of recommendation results can be time-consuming. We believe that learning fine-grained correspondence between each single fact and law articles is crucial for an accurate and trustworthy AI system. With this motivation, we perform a pioneering study and create a corpus with manually annotated fact-article correspondences. We treat the learning as a text matching task and propose a multi-level matching network to address it. To help the model better digest the content of law articles, we parse articles in form of premise-conclusion pairs with random forest. Experiments show that the parsed form yielded better performance and the resulting model surpassed other popular text matching baselines. Furthermore, we compare with previous researches and find that establishing the fine-grained fact-article correspondences can improve the recommendation accuracy by a large margin. Our best system reaches an F1 score of 96.3%, making it of great potential for practical use. It can also significantly boost the downstream task of legal decision prediction, increasing the F1 score by up to 12.7%.
Deep learning has been successful in automating the design of features in machine learning pipelines. However, the algorithms optimizing neural network parameters remain largely hand-designed and computationally inefficient. We study if we can use deep learning to directly predict these parameters by exploiting the past knowledge of training other networks. We introduce a large-scale dataset of diverse computational graphs of neural architectures - DeepNets-1M - and use it to explore parameter prediction on CIFAR-10 and ImageNet. By leveraging advances in graph neural networks, we propose a hypernetwork that can predict performant parameters in a single forward pass taking a fraction of a second, even on a CPU. The proposed model achieves surprisingly good performance on unseen and diverse networks. For example, it is able to predict all 24 million parameters of a ResNet-50 achieving a 60% accuracy on CIFAR-10. On ImageNet, top-5 accuracy of some of our networks approaches 50%. Our task along with the model and results can potentially lead to a new, more computationally efficient paradigm of training networks. Our model also learns a strong representation of neural architectures enabling their analysis.
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
Knowledge Graph (KG) embedding is a fundamental problem in data mining research with many real-world applications. It aims to encode the entities and relations in the graph into low dimensional vector space, which can be used for subsequent algorithms. Negative sampling, which samples negative triplets from non-observed ones in the training data, is an important step in KG embedding. Recently, generative adversarial network (GAN), has been introduced in negative sampling. By sampling negative triplets with large scores, these methods avoid the problem of vanishing gradient and thus obtain better performance. However, using GAN makes the original model more complex and hard to train, where reinforcement learning must be used. In this paper, motivated by the observation that negative triplets with large scores are important but rare, we propose to directly keep track of them with the cache. However, how to sample from and update the cache are two important questions. We carefully design the solutions, which are not only efficient but also achieve a good balance between exploration and exploitation. In this way, our method acts as a "distilled" version of previous GA-based methods, which does not waste training time on additional parameters to fit the full distribution of negative triplets. The extensive experiments show that our method can gain significant improvement in various KG embedding models, and outperform the state-of-the-art negative sampling methods based on GAN.
Weakly supervised instance segmentation with image-level labels, instead of expensive pixel-level masks, remains unexplored. In this paper, we tackle this challenging problem by exploiting class peak responses to enable a classification network for instance mask extraction. With image labels supervision only, CNN classifiers in a fully convolutional manner can produce class response maps, which specify classification confidence at each image location. We observed that local maximums, i.e., peaks, in a class response map typically correspond to strong visual cues residing inside each instance. Motivated by this, we first design a process to stimulate peaks to emerge from a class response map. The emerged peaks are then back-propagated and effectively mapped to highly informative regions of each object instance, such as instance boundaries. We refer to the above maps generated from class peak responses as Peak Response Maps (PRMs). PRMs provide a fine-detailed instance-level representation, which allows instance masks to be extracted even with some off-the-shelf methods. To the best of our knowledge, we for the first time report results for the challenging image-level supervised instance segmentation task. Extensive experiments show that our method also boosts weakly supervised pointwise localization as well as semantic segmentation performance, and reports state-of-the-art results on popular benchmarks, including PASCAL VOC 2012 and MS COCO.
This work presents a region-growing image segmentation approach based on superpixel decomposition. From an initial contour-constrained over-segmentation of the input image, the image segmentation is achieved by iteratively merging similar superpixels into regions. This approach raises two key issues: (1) how to compute the similarity between superpixels in order to perform accurate merging and (2) in which order those superpixels must be merged together. In this perspective, we firstly introduce a robust adaptive multi-scale superpixel similarity in which region comparisons are made both at content and common border level. Secondly, we propose a global merging strategy to efficiently guide the region merging process. Such strategy uses an adpative merging criterion to ensure that best region aggregations are given highest priorities. This allows to reach a final segmentation into consistent regions with strong boundary adherence. We perform experiments on the BSDS500 image dataset to highlight to which extent our method compares favorably against other well-known image segmentation algorithms. The obtained results demonstrate the promising potential of the proposed approach.