亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this article, we propose an optimization-based integrated behavior planning and motion control scheme, which is an interpretable and adaptable urban autonomous driving solution that complies with complex traffic rules while ensuring driving safety. Inherently, to ensure compliance with traffic rules, an innovative design of potential functions (PFs) is presented to characterize various traffic rules related to traffic lights, traversable and non-traversable traffic line markings, etc. These PFs are further incorporated as part of the model predictive control (MPC) formulation. In this sense, high-level behavior planning is attained implicitly along with motion control as an integrated architecture, facilitating flexible maneuvers with safety guarantees. Due to the well-designed objective function of the MPC scheme, our integrated behavior planning and motion control scheme is competent for various urban driving scenarios and able to generate versatile behaviors, such as overtaking with adaptive cruise control, turning in the intersection, and merging in and out of the roundabout. As demonstrated from a series of simulations with challenging scenarios in CARLA, it is noteworthy that the proposed framework admits real-time performance and high generalizability.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

In this paper, we leverage a multi-agent reinforcement learning (MARL) framework to jointly learn a computation offloading decision and multichannel access policy with corresponding signaling. Specifically, the base station and industrial Internet of Things mobile devices are reinforcement learning agents that need to cooperate to execute their computation tasks within a deadline constraint. We adopt an emergent communication protocol learning framework to solve this problem. The numerical results illustrate the effectiveness of emergent communication in improving the channel access success rate and the number of successfully computed tasks compared to contention-based, contention-free, and no-communication approaches. Moreover, the proposed task offloading policy outperforms remote and local computation baselines.

In this paper, we present a simultaneous target tracking and multi-user communications system realized by a full duplex holographic Multiple-Input Multiple-Output (MIMO) node equipped with Dynamic Metasurface Antennas (DMAs) at both its communication ends. Focusing on the near-field regime, we extend Fresnel's approximation to metasurfaces and devise a subspace tracking scheme with DMA-based hybrid Analog and Digital (A/D) reception as well as hybrid A/D transmission with a DMA for sum-rate maximization. The presented simulation results corroborate the efficiency of the proposed framework for various system parameters.

In this paper, we present an approach to automated solving of triangle ruler-and-compass construction problems using finite-domain constraint solvers. The constraint model is described in the MiniZinc modeling language, and is based on the automated planning. The main benefit of using general constraint solvers for such purpose, instead of developing dedicated tools, is that we can rely on the efficient search that is already implemented within the solver, enabling us to focus on geometric aspects of the problem. We may also use the solver's built-in optimization capabilities to search for the shortest possible constructions. We evaluate our approach on 74 solvable problems from the Wernick's list, and compare it to the dedicated triangle construction solver ArgoTriCS. The results show that our approach is comparable to dedicated tools, while it requires much less effort to implement. Also, our model often finds shorter constructions, thanks to the optimization capabilities offered by the constraint solvers.

In this paper, we present conditions for identifying the generator of a linear stochastic differential equation (SDE) from the distribution of its solution process with a given fixed initial state. These identifiability conditions are crucial in causal inference using linear SDEs as they enable the identification of the post-intervention distributions from its observational distribution. Specifically, we derive a sufficient and necessary condition for identifying the generator of linear SDEs with additive noise, as well as a sufficient condition for identifying the generator of linear SDEs with multiplicative noise. We show that the conditions derived for both types of SDEs are generic. Moreover, we offer geometric interpretations of the derived identifiability conditions to enhance their understanding. To validate our theoretical results, we perform a series of simulations, which support and substantiate the established findings.

In this work, we propose a dynamic landing solution without the need for onboard exteroceptive sensors and an expensive computation unit, where all localization and control modules are carried out on the ground in a non-inertial frame. Our system starts with a relative state estimator of the aerial robot from the perspective of the landing platform, where the state tracking of the UAV is done through a set of onboard LED markers and an on-ground camera; the state is expressed geometrically on manifold, and is returned by Iterated Extended Kalman filter (IEKF) algorithm. Subsequently, a motion planning module is developed to guide the landing process, formulating it as a minimum jerk trajectory by applying the differential flatness property. Considering visibility and dynamic constraints, the problem is solved using quadratic programming, and the final motion primitive is expressed through piecewise polynomials. Through a series of experiments, the applicability of this approach is validated by successfully landing 18 cm x 18 cm quadrotor on a 43 cm x 43 cm platform, exhibiting performance comparable to conventional methods. Finally, we provide comprehensive hardware and software details to the research community for future reference.

We consider the problem of decentralized optimization in networks with communication delays. To accommodate delays, we need decentralized optimization algorithms that work on directed graphs. Existing approaches require nodes to know their out-degree to achieve convergence. We propose a novel gossip-based algorithm that circumvents this requirement, allowing decentralized optimization in networks with communication delays. We prove that our algorithm converges on non-convex objectives, with the same main complexity order term as centralized Stochastic Gradient Descent (SGD), and show that the graph topology and the delays only affect the higher order terms. We provide numerical simulations that illustrate our theoretical results.

In this paper, we investigate the problem of distributed transmission control for unmanned aerial vehicles (UAVs) operating in unlicensed spectrum bands. We develop a rigorous interference-aware queuing analysis framework that jointly considers two inter-dependent factors: (i) limited-size queues with delay-constrained packet arrival, and (ii) in-band interference introduced by other ground/aerial users. We aim to optimize the expected throughput by jointly analyzing these factors. In the queuing analysis, we explore two packet loss probabilities including, buffer overflow model and time threshold model. For interference analysis, we investigate the outage probability and packet losses due to low signal-to-interference-plus-noise ratio (SINR). We introduce two algorithms namely, Interference-Aware Transmission Control (IA-TC), and Interference-Aware Distributed Transmission Control (IA-DTC). These algorithms maximize the expected throughput by adjusting transmission policies to balance the trade-offs between packet drop from queues vs. transmission errors due to low SINRs. We implement the proposed algorithms and demonstrate that the optimal transmission policy under various scenarios is found.

With the advancement of neural networks, there has been a notable increase, both in terms of quantity and variety, in research publications concerning the application of autoencoders to reduced-order models. We propose a polytopic autoencoder architecture that includes a lightweight nonlinear encoder, a convex combination decoder, and a smooth clustering network. Supported by several proofs, the model architecture ensures that all reconstructed states lie within a polytope, accompanied by a metric indicating the quality of the constructed polytopes, referred to as polytope error. Additionally, it offers a minimal number of convex coordinates for polytopic linear-parameter varying systems while achieving acceptable reconstruction errors compared to proper orthogonal decomposition (POD). To validate our proposed model, we conduct simulations involving two flow scenarios with the incompressible Navier-Stokes equation. Numerical results demonstrate the guaranteed properties of the model, low reconstruction errors compared to POD, and the improvement in error using a clustering network.

In this paper, we present a new method for detecting road users in an urban environment which leads to an improvement in multiple object tracking. Our method takes as an input a foreground image and improves the object detection and segmentation. This new image can be used as an input to trackers that use foreground blobs from background subtraction. The first step is to create foreground images for all the frames in an urban video. Then, starting from the original blobs of the foreground image, we merge the blobs that are close to one another and that have similar optical flow. The next step is extracting the edges of the different objects to detect multiple objects that might be very close (and be merged in the same blob) and to adjust the size of the original blobs. At the same time, we use the optical flow to detect occlusion of objects that are moving in opposite directions. Finally, we make a decision on which information we keep in order to construct a new foreground image with blobs that can be used for tracking. The system is validated on four videos of an urban traffic dataset. Our method improves the recall and precision metrics for the object detection task compared to the vanilla background subtraction method and improves the CLEAR MOT metrics in the tracking tasks for most videos.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司