In this work, we propose a dynamic landing solution without the need for onboard exteroceptive sensors and an expensive computation unit, where all localization and control modules are carried out on the ground in a non-inertial frame. Our system starts with a relative state estimator of the aerial robot from the perspective of the landing platform, where the state tracking of the UAV is done through a set of onboard LED markers and an on-ground camera; the state is expressed geometrically on manifold, and is returned by Iterated Extended Kalman filter (IEKF) algorithm. Subsequently, a motion planning module is developed to guide the landing process, formulating it as a minimum jerk trajectory by applying the differential flatness property. Considering visibility and dynamic constraints, the problem is solved using quadratic programming, and the final motion primitive is expressed through piecewise polynomials. Through a series of experiments, the applicability of this approach is validated by successfully landing 18 cm x 18 cm quadrotor on a 43 cm x 43 cm platform, exhibiting performance comparable to conventional methods. Finally, we provide comprehensive hardware and software details to the research community for future reference.
In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the inference efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real world example. The simplicity and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when the number of baseline covariates is large, and when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.
In this paper, we examine the role of stochastic quantizers for privacy preservation. We first employ a static stochastic quantizer and investigate its corresponding privacy-preserving properties. Specifically, we demonstrate that a sufficiently large quantization step guarantees $(0, \delta)$ differential privacy. Additionally, the degradation of control performance caused by quantization is evaluated as the tracking error of output regulation. These two analyses characterize the trade-off between privacy and control performance, determined by the quantization step. This insight enables us to use quantization intentionally as a means to achieve the seemingly conflicting two goals of maintaining control performance and preserving privacy at the same time; towards this end, we further investigate a dynamic stochastic quantizer. Under a stability assumption, the dynamic stochastic quantizer can enhance privacy, more than the static one, while achieving the same control performance. We further handle the unstable case by additionally applying input Gaussian noise.
In this paper, we explore the capability of an agent to construct a logical sequence of action steps, thereby assembling a strategic procedural plan. This plan is crucial for navigating from an initial visual observation to a target visual outcome, as depicted in real-life instructional videos. Existing works have attained partial success by extensively leveraging various sources of information available in the datasets, such as heavy intermediate visual observations, procedural names, or natural language step-by-step instructions, for features or supervision signals. However, the task remains formidable due to the implicit causal constraints in the sequencing of steps and the variability inherent in multiple feasible plans. To tackle these intricacies that previous efforts have overlooked, we propose to enhance the capabilities of the agent by infusing it with procedural knowledge. This knowledge, sourced from training procedure plans and structured as a directed weighted graph, equips the agent to better navigate the complexities of step sequencing and its potential variations. We coin our approach KEPP, a novel Knowledge-Enhanced Procedure Planning system, which harnesses a probabilistic procedural knowledge graph extracted from training data, effectively acting as a comprehensive textbook for the training domain. Experimental evaluations across three widely-used datasets under settings of varying complexity reveal that KEPP attains superior, state-of-the-art results while requiring only minimal supervision.
In this paper, we propose novel Gaussian process-gated hierarchical mixtures of experts (GPHMEs). Unlike other mixtures of experts with gating models linear in the input, our model employs gating functions built with Gaussian processes (GPs). These processes are based on random features that are non-linear functions of the inputs. Furthermore, the experts in our model are also constructed with GPs. The optimization of the GPHMEs is performed by variational inference. The proposed GPHMEs have several advantages. They outperform tree-based HME benchmarks that partition the data in the input space, and they achieve good performance with reduced complexity. Another advantage is the interpretability they provide for deep GPs, and more generally, for deep Bayesian neural networks. Our GPHMEs demonstrate excellent performance for large-scale data sets, even with quite modest sizes.
In this work, we present novel protocols over rings for semi-honest secure three-party computation (3-PC) and malicious four-party computation (4-PC) with one corruption. Compared to state-of-the-art protocols in the same setting, our protocols require fewer low-latency and high-bandwidth links between the parties to achieve high throughput. Our protocols also reduce the computational complexity by requiring up to 50 percent fewer basic instructions per gate. Further, our protocols achieve the currently best-known communication complexity (3, resp. 5 elements per multiplication gate) with an optional preprocessing phase to reduce the communication complexity of the online phase to 2 (resp. 3) elements per multiplication gate. In homogeneous network settings, i.e. all links between the parties share similar network bandwidth and latency, our protocols achieve up to two times higher throughput than state-of-the-art protocols. In heterogeneous network settings, i.e. all links between the parties share different network bandwidth and latency, our protocols achieve even larger performance improvements. We implemented our protocols and multiple other state-of-the-art protocols (Replicated 3-PC, Astra, Fantastic Four, Tetrad) in a novel open-source C++ framework optimized for achieving high throughput. Five out of six implemented 3-PC and 4-PC protocols achieve more than one billion 32-bit multiplication or more than 32 billion AND gates per second using our implementation in a 25 Gbit/s LAN environment. This is the highest throughput achieved in 3-PC and 4-PC so far and between two and three orders of magnitude higher than the throughput MP-SPDZ achieves in the same settings.
In this paper, we introduce a set representation called polynomial logical zonotopes for performing exact and computationally efficient reachability analysis on logical systems. Polynomial logical zonotopes are a generalization of logical zonotopes, which are able to represent up to 2^n binary vectors using only n generators. Due to their construction, logical zonotopes are only able to support exact computations of some logical operations (XOR, NOT, XNOR), while other operations (AND, NAND, OR, NOR) result in over-approximations in the reduced space, i.e., generator space. In order to perform all fundamental logical operations exactly, we formulate a generalization of logical zonotopes that is constructed by dependent generators and exponent matrices. We prove that through this polynomial-like construction, we are able to perform all of the fundamental logical operations (XOR, NOT, XNOR, AND, NAND, OR, NOR) exactly in the generator space. While we are able to perform all of the logical operations exactly, this comes with a slight increase in computational complexity compared to logical zonotopes. We show that we can use polynomial logical zonotopes to perform exact reachability analysis while retaining a low computational complexity. To illustrate and showcase the computational benefits of polynomial logical zonotopes, we present the results of performing reachability analysis on two use cases: (1) safety verification of an intersection crossing protocol and (2) reachability analysis on a high-dimensional Boolean function. Moreover, to highlight the extensibility of logical zonotopes, we include an additional use case where we perform a computationally tractable exhaustive search for the key of a linear feedback shift register.
In this work, we proposed a new dynamic distributed planning approach that is able to take into account the changes that the agent introduces on his set of actions to be planned in order to take into account the changes that occur in his environment. Our approach fits into the context of distributed planning for distributed plans where each agent can produce its own plans. According to our approach the generation of the plans is based on the satisfaction of the constraints by the use of the genetic algorithms. Our approach is to generate, a new plan by each agent, whenever there is a change in its set of actions to plan. This in order to take into account the new actions introduced in its new plan. In this new plan, the agent takes, each time, as a new action set to plan all the old un-executed actions of the old plan and the new actions engendered by the changes and as a new initial state; the state in which the set of actions of the agent undergoes a change. In our work, we used a concrete case to illustrate and demonstrate the utility of our approach.
In this paper, we explore the intriguing similarities between the structure of a discrete neural network, such as a spiking network, and the composition of a piano piece. While both involve nodes or notes that are activated sequentially or in parallel, the latter benefits from the rich body of music theory to guide meaningful combinations. We propose a novel approach that leverages musical grammar to regulate activations in a spiking neural network, allowing for the representation of symbols as attractors. By applying rules for chord progressions from music theory, we demonstrate how certain activations naturally follow others, akin to the concept of attraction. Furthermore, we introduce the concept of modulating keys to navigate different basins of attraction within the network. Ultimately, we show that the map of concepts in our model is structured by the musical circle of fifths, highlighting the potential for leveraging music theory principles in deep learning algorithms.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.