亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

ChatGPT is becoming a new reality. In this paper, we demonstrate a method for distinguishing ChatGPT-generated publications from those produced by scientists. The objective of this work is to introduce a newly designed supervised network-driven algorithm that illustrates how to predict machine-generated content. The premise is that ChatGPT content exhibits behavior that is distinctive and can be set apart from scientific articles. The algorithm was trained and tested on three disease-specific publications, with each model constructed from 100 abstracts. Additionally, the algorithm underwent k-Folds calibration (depending on the availability of the data) to establish a lower-upper bound range of acceptance. The network training model of ChatGPT showed a lower number of nodes and a higher number of edges when compared with models of real article abstracts. The algorithm was executed in single-mode to predict the class of one type of dataset at a time and achieved >94%. It was also executed in multi-mode on mixed documents of ChatGPT and PubMed abstracts. The algorithm remarkably predicted real articles with a precision of 100% and, on rare occasions, 96%-98%. However, ChatGPT content was often misclassified as real publications with up to 88% accuracy in all datasets of the three diseases. Our results also showed that the year of publications mixed with ChatGPT-generated content may play a factor in detecting the correct class, where the older the publication, the better the prediction.

相關內容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美國OpenAI 研發的聊天機器人程序 [1] ,于2022年11月30日發布 。ChatGPT是人工智能技術驅動的自然語言處理工具,它能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼,寫論文任務。 [1] //openai.com/blog/chatgpt/

An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.

In the realm of Reinforcement Learning (RL), online RL is often conceptualized as an optimization problem, where an algorithm interacts with an unknown environment to minimize cumulative regret. In a stationary setting, strong theoretical guarantees, like a sublinear ($\sqrt{T}$) regret bound, can be obtained, which typically implies the convergence to an optimal policy and the cessation of exploration. However, these theoretical setups often oversimplify the complexities encountered in real-world RL implementations, where tasks arrive sequentially with substantial changes between tasks and the algorithm may not be allowed to adaptively learn within certain tasks. We study the changes beyond the outcome distributions, encompassing changes in the reward designs (mappings from outcomes to rewards) and the permissible policy spaces. Our results reveal the fallacy of myopically minimizing regret within each task: obtaining optimal regret rates in the early tasks may lead to worse rates in the subsequent ones, even when the outcome distributions stay the same. To realize the optimal cumulative regret bound across all the tasks, the algorithm has to overly explore in the earlier tasks. This theoretical insight is practically significant, suggesting that due to unanticipated changes (e.g., rapid technological development or human-in-the-loop involvement) between tasks, the algorithm needs to explore more than it would in the usual stationary setting within each task. Such implication resonates with the common practice of using clipped policies in mobile health clinical trials and maintaining a fixed rate of $\epsilon$-greedy exploration in robotic learning.

This paper introduces a novel approach to uncovering and analyzing themes in social media messaging. Recognizing the limitations of traditional topic-level analysis, which tends to capture only the overarching patterns, this study emphasizes the need for a finer-grained, theme-focused exploration. Conventional methods of theme discovery, involving manual processes and a human-in-the-loop approach, are valuable but face challenges in scalability, consistency, and resource intensity in terms of time and cost. To address these challenges, we propose a machine-in-the-loop approach that leverages the advanced capabilities of Large Language Models (LLMs). This approach allows for a deeper investigation into the thematic aspects of social media discourse, enabling us to uncover a diverse array of themes, each with unique characteristics and relevance, thereby offering a comprehensive understanding of the nuances present within broader topics. Furthermore, this method efficiently maps the text and the newly discovered themes, enhancing our understanding of the thematic nuances in social media messaging. We employ climate campaigns as a case study and demonstrate that our methodology yields more accurate and interpretable results compared to traditional topic models. Our results not only demonstrate the effectiveness of our approach in uncovering latent themes but also illuminate how these themes are tailored for demographic targeting in social media contexts. Additionally, our work sheds light on the dynamic nature of social media, revealing the shifts in the thematic focus of messaging in response to real-world events.

Average Treatment Effect (ATE) estimation is a well-studied problem in causal inference. However, it does not necessarily capture the heterogeneity in the data, and several approaches have been proposed to tackle the issue, including estimating the Quantile Treatment Effects. In the finite population setting containing $n$ individuals, with treatment and control values denoted by the potential outcome vectors $\mathbf{a}, \mathbf{b}$, much of the prior work focused on estimating median$(\mathbf{a}) -$ median$(\mathbf{b})$, where median($\mathbf x$) denotes the median value in the sorted ordering of all the values in vector $\mathbf x$. It is known that estimating the difference of medians is easier than the desired estimand of median$(\mathbf{a-b})$, called the Median Treatment Effect (MTE). The fundamental problem of causal inference -- for every individual $i$, we can only observe one of the potential outcome values, i.e., either the value $a_i$ or $b_i$, but not both, makes estimating MTE particularly challenging. In this work, we argue that MTE is not estimable and detail a novel notion of approximation that relies on the sorted order of the values in $\mathbf{a-b}$. Next, we identify a quantity called variability that exactly captures the complexity of MTE estimation. By drawing connections to instance-optimality studied in theoretical computer science, we show that every algorithm for estimating the MTE obtains an approximation error that is no better than the error of an algorithm that computes variability. Finally, we provide a simple linear time algorithm for computing the variability exactly. Unlike much prior work, a particular highlight of our work is that we make no assumptions about how the potential outcome vectors are generated or how they are correlated, except that the potential outcome values are $k$-ary, i.e., take one of $k$ discrete values.

We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.

Powerful generative Large Language Models (LLMs) are becoming popular tools amongst the general public as question-answering systems, and are being utilised by vulnerable groups such as children. With children increasingly interacting with these tools, it is imperative for researchers to scrutinise the safety of LLMs, especially for applications that could lead to serious outcomes, such as online child safety queries. In this paper, the efficacy of LLMs for online grooming prevention is explored both for identifying and avoiding grooming through advice generation, and the impact of prompt design on model performance is investigated by varying the provided context and prompt specificity. In results reflecting over 6,000 LLM interactions, we find that no models were clearly appropriate for online grooming prevention, with an observed lack of consistency in behaviours, and potential for harmful answer generation, especially from open-source models. We outline where and how models fall short, providing suggestions for improvement, and identify prompt designs that heavily altered model performance in troubling ways, with findings that can be used to inform best practice usage guides.

Large-scale Pretrained Language Models (LLMs), such as ChatGPT and GPT4, have shown strong abilities in multilingual translations, without being explicitly trained on parallel corpora. It is interesting how the LLMs obtain their ability to carry out translation instructions for different languages. In this paper, we present a detailed analysis by finetuning a multilingual pretrained language model, XGLM-7B, to perform multilingual translation following given instructions. Firstly, we show that multilingual LLMs have stronger translation abilities than previously demonstrated. For a certain language, the performance depends on its similarity to English and the amount of data used in the pretraining phase. Secondly, we find that LLMs' ability to carry out translation instructions relies on the understanding of translation instructions and the alignment among different languages. With multilingual finetuning, LLMs could learn to perform the translation task well even for those language pairs unseen during the instruction tuning phase.

In this paper we delve into the historical evolution of data as a fundamental element in communication and knowledge transmission. The paper traces the stages of knowledge dissemination from oral traditions to the digital era, highlighting the significance of languages and cultural diversity in this progression. It also explores the impact of digital technologies on memory, communication, and cultural preservation, emphasizing the need for promoting a culture of the digital (rather than a digital culture) in Africa and beyond. Additionally, it discusses the challenges and opportunities presented by data biases in AI development, underscoring the importance of creating diverse datasets for equitable representation. We advocate for investing in data as a crucial raw material for fostering digital literacy, economic development, and, above all, cultural preservation in the digital age.

Communicating design implications is common within the HCI community when publishing academic papers, yet these papers are rarely read and used by designers. One solution is to use design cards as a form of translational resource that communicates valuable insights from papers in a more digestible and accessible format to assist in design processes. However, creating design cards can be time-consuming, and authors may lack the resources/know-how to produce cards. Through an iterative design process, we built a system that helps create design cards from academic papers using an LLM and text-to-image model. Our evaluation with designers (N=21) and authors of selected papers (N=12) revealed that designers perceived the design implications from our design cards as more inspiring and generative, compared to reading original paper texts, and the authors viewed our system as an effective way of communicating their design implications. We also propose future enhancements for AI-generated design cards.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司