We couple the L1 discretization for Caputo derivative in time with spectral Galerkin method in space to devise a scheme that solves quasilinear subdiffusion equations. Both the diffusivity and the source are allowed to be nonlinear functions of the solution. We prove method's stability and convergence with spectral accuracy in space. The temporal order depends on solution's regularity in time. Further, we support our results with numerical simulations that utilize parallelism for spatial discretization. Moreover, as a side result we find asymptotic exact values of error constants along with their remainders for discretizations of Caputo derivative and fractional integrals. These constants are the smallest possible which improves the previously established results from the literature.
We present a cut finite element method for the heat equation on two overlapping meshes. By overlapping meshes we mean a mesh hierarchy with a stationary background mesh at the bottom and an overlapping mesh that is allowed to move around on top of the background mesh. Overlapping meshes can be used as an alternative to costly remeshing for problems with changing or evolving interior geometry. In this paper the overlapping mesh is prescribed a cG(1) movement, meaning that its location as a function of time is continuous and piecewise linear. For the discrete function space, we use continuous Galerkin in space and discontinuous Galerkin in time, with the addition of a discontinuity on the boundary between the two meshes. The finite element formulation is based on Nitsche's method and also includes an integral term over the space-time boundary that mimics the standard discontinuous Galerkin time-jump term. The cG(1) mesh movement results in a space-time discretization for which existing analysis methodologies either fail or are unsuitable. We therefore propose, to the best of our knowledge, a new energy analysis framework that is general and robust enough to be applicable to the current setting$^*$. The energy analysis consists of a stability estimate that is slightly stronger than the standard basic one and an a priori error estimate that is of optimal order with respect to both time step and mesh size. We also present numerical results for a problem in one spatial dimension that verify the analytic error convergence orders. $*$ UPDATE and CORRECTION: After this work was made public, it was discovered that the core components of the new energy analysis framework seemed to have been discovered independently by us and Cangiani, Dong, and Georgoulis in [1].
The Keller-Segel-Navier-Stokes system governs chemotaxis in liquid environments. This system is to be solved for the organism and chemoattractant densities and for the fluid velocity and pressure. It is known that if the total initial cell density mass is below $2\pi$ there exist globally defined generalised solutions, but what is less understood is whether there are blow-up solutions beyond such a threshold and its optimality. Motivated by this issue, a numerical blow-up scenario is investigated. Approximate solutions computed via a stabilised finite element method founded on a shock capturing technique are such that they satisfy \emph{a priori} bounds as well as lower and $L^1(\Omega)$ bounds for the cell and chemoattractant densities. In particular, this latter properties are essential in detecting numerical blow-up configurations, since the non-satisfaction of these two requirements might trigger numerical oscillations leading to non-realistic finite-time collapses into persistent Dirac-type measures. Our findings show that the existence threshold value $2\pi$ encountered for the cell density mass may not be optimal and hence it is conjectured that the critical threshold value $4\pi$ may be inherited from the fluid-free Keller-Segel equations. Additionally it is observed that the formation of singular points can be neglected if the fluid flow is intensified.
Non-orthogonal multiple access (NOMA) has become a promising technology for next-generation wireless communications systems due to its capability to provide access for multiple users on the same resource. In this paper, we consider an uplink power-domain NOMA system aided by a reconfigurable intelligent surface (RIS) in the presence of a jammer that aims to maximize its interference on the base station (BS) uplink receiver. We consider two kinds of RISs, a regular RIS whose elements can only change the phase of the incoming wave, and an RIS whose elements can also attenuate the incoming wave. Our aim is to minimize the total power transmitted by the user terminals under quality-of-service constraints by controlling both the propagation from the users and the jammer to the BS with help of the RIS. The resulting objective function and constraints are both non-linear and non-convex, so we address this problem using numerical optimization. Our numerical results show that the RIS can help to dramatically reduce the per user required transmit power in an interference-limited scenario.
In p-median location interdiction the aim is to find a subset of edges in a graph, such that the objective value of the p-median problem in the same graph without the selected edges is as large as possible. We prove that this problem is NP-hard even on acyclic graphs. Restricting the problem to trees with unit lengths on the edges, unit interdiction costs, and a single edge interdiction, we provide an algorithm which solves the problem in polynomial time. Furthermore, we investigate path graphs with unit and arbitrary lengths. For the former case, we present an algorithm, where multiple edges can get interdicted. Furthermore, for the latter case, we present a method to compute an optimal solution for one interdiction step which can also be extended to multiple interdicted edges.
We present a novel solver technique for the anisotropic heat flux equation, aimed at the high level of anisotropy seen in magnetic confinement fusion plasmas. Such problems pose two major challenges: (i) discretization accuracy and (ii) efficient implicit linear solvers. We simultaneously address each of these challenges by constructing a new finite element discretization with excellent accuracy properties, tailored to a novel solver approach based on algebraic multigrid (AMG) methods designed for advective operators. We pose the problem in a mixed formulation, introducing the heat flux as an auxiliary variable and discretizing the temperature and auxiliary fields in a discontinuous Galerkin space. The resulting block matrix system is then reordered and solved using an approach in which two advection operators are inverted using AMG solvers based on approximate ideal restriction (AIR), which is particularly efficient for upwind discontinuous Galerkin discretizations of advection. To ensure that the advection operators are non-singular, in this paper we restrict ourselves to considering open (acyclic) magnetic field lines. We demonstrate the proposed discretization's superior accuracy over other discretizations of anisotropic heat flux, achieving error $1000\times$ smaller for anisotropy ratio of $10^9$, while also demonstrating fast convergence of the proposed iterative solver in highly anisotropic regimes where other diffusion-based AMG methods fail.
Modern policy optimization methods in applied reinforcement learning are often inspired by the trust region policy optimization algorithm, which can be interpreted as a particular instance of policy mirror descent. While theoretical guarantees have been established for this framework, particularly in the tabular setting, the use of a general parametrization scheme remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parametrizations. The policy class induced by our scheme recovers known classes, e.g. tabular softmax, log-linear, and neural policies. It also generates new ones, depending on the choice of the mirror map. For a general mirror map and parametrization function, we establish the quasi-monotonicity of the updates in value function, global linear convergence rates, and we bound the total variation of the algorithm along its path. To showcase the ability of our framework to accommodate general parametrization schemes, we present a case study involving shallow neural networks.
In this paper, we present a unified and general framework for analyzing the batch updating approach to nonlinear, high-dimensional optimization. The framework encompasses all the currently used batch updating approaches, and is applicable to nonconvex as well as convex functions. Moreover, the framework permits the use of noise-corrupted gradients, as well as first-order approximations to the gradient (sometimes referred to as "gradient-free" approaches). By viewing the analysis of the iterations as a problem in the convergence of stochastic processes, we are able to establish a very general theorem, which includes most known convergence results for zeroth-order and first-order methods. The analysis of "second-order" or momentum-based methods is not a part of this paper, and will be studied elsewhere. However, numerical experiments indicate that momentum-based methods can fail if the true gradient is replaced by its first-order approximation. This requires further theoretical analysis.
A data-driven framework is presented, that enables the prediction of quantities, either observations or parameters, given sufficient partial data. The framework is illustrated via a computational model of the deposition of Cu in a Chemical Vapor Deposition (CVD) reactor, where the reactor pressure, the deposition temperature and feed mass flow rate are important process parameters that determine the outcome of the process. The sampled observations are high-dimensional vectors containing the outputs of a detailed CFD steady-state model of the process, i.e. the values of velocity, pressure, temperature, and species mass fractions at each point in the discretization. A machine learning workflow is presented, able to predict out-of-sample (a) observations (e.g. mass fraction in the reactor) given process parameters (e.g. inlet temperature); (b) process parameters given observation data; and (c) partial observations (e.g. temperature in the reactor) given other partial observations (e.g. mass fraction in the reactor). The proposed workflow relies on the manifold learning schemes Diffusion Maps and the associated Geometric Harmonics. Diffusion Maps is used for discovering a reduced representation of the available data, and Geometric Harmonics for extending functions defined on the manifold. In our work a special use case of Geometric Harmonics is formulated and implemented, which we call Double Diffusion Maps, to map from the reduced representation back to (partial) observations and process parameters. A comparison of our manifold learning scheme to the traditional Gappy-POD approach is provided: ours can be thought of as a "Gappy DMAP" approach. The presented methodology is easily transferable to application domains beyond reactor engineering.
Transfer learning for partial differential equations (PDEs) is to develop a pre-trained neural network that can be used to solve a wide class of PDEs. Existing transfer learning approaches require much information of the target PDEs such as its formulation and/or data of its solution for pre-training. In this work, we propose to construct transferable neural feature spaces from purely function approximation perspectives without using PDE information. The construction of the feature space involves re-parameterization of the hidden neurons and uses auxiliary functions to tune the resulting feature space. Theoretical analysis shows the high quality of the produced feature space, i.e., uniformly distributed neurons. Extensive numerical experiments verify the outstanding performance of our method, including significantly improved transferability, e.g., using the same feature space for various PDEs with different domains and boundary conditions, and the superior accuracy, e.g., several orders of magnitude smaller mean squared error than the state of the art methods.
We propose a novel machine learning method based on differentiable vortex particles to infer and predict fluid dynamics from a single video. The key design of our system is a particle-based latent space to encapsulate the hidden, Lagrangian vortical evolution underpinning the observable, Eulerian flow phenomena. We devise a novel differentiable vortex particle system in conjunction with their learnable, vortex-to-velocity dynamics mapping to effectively capture and represent the complex flow features in a reduced space. We further design an end-to-end training pipeline to directly learn and synthesize simulators from data, that can reliably deliver future video rollouts based on limited observation. The value of our method is twofold: first, our learned simulator enables the inference of hidden physics quantities (e.g. velocity field) purely from visual observation, to be used for motion analysis; secondly, it also supports future prediction, constructing the input video's sequel along with its future dynamics evolution. We demonstrate our method's efficacy by comparing quantitatively and qualitatively with a range of existing methods on both synthetic and real-world videos, displaying improved data correspondence, visual plausibility, and physical integrity.