Private and public sector structures and norms refine how emerging technology is used in practice. In healthcare, despite a proliferation of AI adoption, the organizational governance surrounding its use and integration is often poorly understood. What the Health AI Partnership (HAIP) aims to do in this research is to better define the requirements for adequate organizational governance of AI systems in healthcare settings and support health system leaders to make more informed decisions around AI adoption. To work towards this understanding, we first identify how the standards for the AI adoption in healthcare may be designed to be used easily and efficiently. Then, we map out the precise decision points involved in the practical institutional adoption of AI technology within specific health systems. Practically, we achieve this through a multi-organizational collaboration with leaders from major health systems across the United States and key informants from related fields. Working with the consultancy IDEO.org, we were able to conduct usability-testing sessions with healthcare and AI ethics professionals. Usability analysis revealed a prototype structured around mock key decision points that align with how organizational leaders approach technology adoption. Concurrently, we conducted semi-structured interviews with 89 professionals in healthcare and other relevant fields. Using a modified grounded theory approach, we were able to identify 8 key decision points and comprehensive procedures throughout the AI adoption lifecycle. This is one of the most detailed qualitative analyses to date of the current governance structures and processes involved in AI adoption by health systems in the United States. We hope these findings can inform future efforts to build capabilities to promote the safe, effective, and responsible adoption of emerging technologies in healthcare.
The rapid advancement of artificial intelligence (AI) such as the emergence of large language models including ChatGPT and DALLE 2 has brought both opportunities for improving productivity and raised ethical concerns. This paper investigates the ethics of using artificial intelligence (AI) in cartography, with a particular focus on the generation of maps using DALLE 2. To accomplish this, we first create an open-sourced dataset that includes synthetic (AI-generated) and real-world (human-designed) maps at multiple scales with a variety settings. We subsequently examine four potential ethical concerns that may arise from the characteristics of DALLE 2 generated maps, namely inaccuracies, misleading information, unanticipated features, and reproducibility. We then develop a deep learning-based ethical examination system that identifies those AI-generated maps. Our research emphasizes the importance of ethical considerations in the development and use of AI techniques in cartography, contributing to the growing body of work on trustworthy maps. We aim to raise public awareness of the potential risks associated with AI-generated maps and support the development of ethical guidelines for their future use.
This pioneering study explores students' perceptions of AI-giarism, an emergent form of academic dishonesty involving AI and plagiarism, within the higher education context. A survey, undertaken by 393 undergraduate and postgraduate students from a variety of disciplines, investigated their perceptions of diverse AI-giarism scenarios. The findings portray a complex landscape of understanding, with clear disapproval for direct AI content generation, yet more ambivalent attitudes towards subtler uses of AI. The study introduces a novel instrument, as an initial conceptualization of AI-giarism, offering a significant tool for educators and policy-makers. This scale facilitates understanding and discussions around AI-related academic misconduct, aiding in pedagogical design and assessment in an era of AI integration. Moreover, it challenges traditional definitions of academic misconduct, emphasizing the need to adapt in response to evolving AI technology. Despite limitations, such as the rapidly changing nature of AI and the use of convenience sampling, the study provides pivotal insights for academia, policy-making, and the broader integration of AI technology in education.
Explainable recommender systems (RS) have traditionally followed a one-size-fits-all approach, delivering the same explanation level of detail to each user, without considering their individual needs and goals. Further, explanations in RS have so far been presented mostly in a static and non-interactive manner. To fill these research gaps, we aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences. We followed a user-centered approach to design interactive explanations with three levels of detail (basic, intermediate, and advanced) and implemented them in the transparent Recommendation and Interest Modeling Application (RIMA). We conducted a qualitative user study (N=14) to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS. Our study showed qualitative evidence that fostering interaction and giving users control in deciding which explanation they would like to see can meet the demands of users with different needs, preferences, and goals, and consequently can have positive effects on different crucial aspects in explainable recommendation, including transparency, trust, satisfaction, and user experience.
Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and non-local treatment. This is especially relevant when estimating the effect of power plant emissions controls on population health, as pollution exposure is dictated by (i) the location of point-source emissions, as well as (ii) the transport of pollutants across space via dynamic physical-chemical processes. In this work, we estimate the effectiveness of air quality interventions at coal-fired power plants in reducing two adverse health outcomes in Texas in 2016: pediatric asthma ED visits and Medicare all-cause mortality. We develop methods for causal inference with interference when the underlying network structure is not known with certainty and instead must be estimated from ancillary data. We offer a Bayesian, spatial mechanistic model for the interference mapping which we combine with a flexible non-parametric outcome model to marginalize estimates of causal effects over uncertainty in the structure of interference. Our analysis finds some evidence that emissions controls at upwind power plants reduce asthma ED visits and all-cause mortality, however accounting for uncertainty in the interference renders the results largely inconclusive.
Healthcare knowledge graphs (HKGs) have emerged as a promising tool for organizing medical knowledge in a structured and interpretable way, which provides a comprehensive view of medical concepts and their relationships. However, challenges such as data heterogeneity and limited coverage remain, emphasizing the need for further research in the field of HKGs. This survey paper serves as the first comprehensive overview of HKGs. We summarize the pipeline and key techniques for HKG construction (i.e., from scratch and through integration), as well as the common utilization approaches (i.e., model-free and model-based). To provide researchers with valuable resources, we organize existing HKGs (The resource is available at //github.com/lujiaying/Awesome-HealthCare-KnowledgeBase) based on the data types they capture and application domains, supplemented with pertinent statistical information. In the application section, we delve into the transformative impact of HKGs across various healthcare domains, spanning from fine-grained basic science research to high-level clinical decision support. Lastly, we shed light on the opportunities for creating comprehensive and accurate HKGs in the era of large language models, presenting the potential to revolutionize healthcare delivery and enhance the interpretability and reliability of clinical prediction.
As artificial intelligence (AI) systems become more prevalent, ensuring fairness in their design becomes increasingly important. This survey focuses on the subdomains of social media and healthcare, examining the concepts of fairness, accountability, transparency, and ethics (FATE) within the context of AI. We explore existing research on FATE in AI, highlighting the benefits and limitations of current solutions, and provide future research directions. We found that statistical and intersectional fairness can support fairness in healthcare on social media platforms, and transparency in AI is essential for accountability. While solutions like simulation, data analytics, and automated systems are widely used, their effectiveness can vary, and keeping up-to-date with the latest research is crucial.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.
Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.