亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Time-space fractional Bloch-Torrey equations (TSFBTEs) are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order implicit difference scheme for TSFBTEs by employing the recently proposed L2-type formula [A. A. Alikhanov, C. Huang, Appl. Math. Comput. (2021) 126545]. Then, we prove the stability and the convergence of the proposed scheme. Based on such a numerical scheme, an L2-type all-at-once system is derived. In order to solve this system in a parallel-in-time pattern, a bilateral preconditioning technique is designed to accelerate the convergence of Krylov subspace solvers according to the special structure of the coefficient matrix of the system. We theoretically show that the condition number of the preconditioned matrix is uniformly bounded by a constant for the time fractional order $\alpha \in (0,0.3624)$. Numerical results are reported to show the efficiency of our method.

相關內容

A novel approach to computing time-harmonic solutions of Maxwell's equations by time-domain simulations is presented. The method, EM-WaveHoltz, results in a positive definite system of equations which makes it amenable to iterative solution with the conjugate gradient method or with GMRES. Theoretical results guaranteeing the convergence of the method away from resonances is presented. Numerical examples illustrating the properties of EM-WaveHoltz are given.

Three algorithm are proposed to evaluate volume potentials that arise in boundary element methods for elliptic PDEs. The approach is to apply a modified fast multipole method for a boundary concentrated volume mesh. If $h$ is the meshwidth of the boundary, then the volume is discretized using nearly $O(h^{-2})$ degrees of freedom, and the algorithm computes potentials in nearly $O(h^{-2})$ complexity. Here nearly means that logarithmic terms of $h$ may appear. Thus the complexity of volume potentials calculations is of the same asymptotic order as boundary potentials. For sources and potentials with sufficient regularity the parameters of the algorithm can be designed such that the error of the approximated potential converges at any specified rate $O(h^p)$. The accuracy and effectiveness of the proposed algorithms are demonstrated for potentials of the Poisson equation in three dimensions.

This paper is concerned with the phase estimation algorithm in quantum computing algorithms, especially the scenarios where (1) the input vector is not an eigenvector; (2) the unitary operator is not exactly implemented; (3) random approximations are used for the unitary operator, e.g., the QDRIFT method. We characterize the probability of computing the phase values in terms of the consistency error, including the residual error, Trotter splitting error, or statistical mean-square error.

We deal with a long-standing problem about how to design an energy-stable numerical scheme for solving the motion of a closed curve under {\sl anisotropic surface diffusion} with a general anisotropic surface energy $\gamma(\boldsymbol{n})$ in two dimensions, where $\boldsymbol{n}$ is the outward unit normal vector. By introducing a novel symmetric positive definite surface energy matrix $Z_k(\boldsymbol{n})$ depending on the Cahn-Hoffman $\boldsymbol{\xi}$-vector and a stabilizing function $k(\boldsymbol{n})$, we first reformulate the anisotropic surface diffusion into a conservative form and then derive a new symmetrized variational formulation for the anisotropic surface diffusion with both weakly and strongly anisotropic surface energies. A semi-discretization in space for the symmetrized variational formulation is proposed and its area (or mass) conservation and energy dissipation are proved. The semi-discretization is then discretized in time by either an implicit structural-preserving scheme (SP-PFEM) which preserves the area in the discretized level or a semi-implicit energy-stable method (ES-PFEM) which needs only solve a linear system at each time step. Under a relatively simple and mild condition on $\gamma(\boldsymbol{n})$, we show that both SP-PFEM and ES-PFEM are energy dissipative and thus are unconditionally energy-stable for almost all anisotropic surface energies $\gamma(\boldsymbol{n})$ arising in practical applications. Specifically, for several commonly-used anisotropic surface energies, we construct $Z_k(\boldsymbol{n})$ explicitly. Finally, extensive numerical results are reported to demonstrate the efficiency and accuracy as well as the unconditional energy-stability of the proposed symmetrized parametric finite element method.

We consider a generic and explicit tamed Euler--Maruyama scheme for multidimensional time-inhomogeneous stochastic differential equations with multiplicative Brownian noise. The diffusion coefficient is uniformly elliptic, H\"older continuous and weakly differentiable in the spatial variables while the drift satisfies the Ladyzhenskaya--Prodi--Serrin condition, as considered by Krylov and R\"ockner (2005). In the discrete scheme, the drift is tamed by replacing it by an approximation. A strong rate of convergence of the scheme is provided in terms of the approximation error of the drift in a suitable and possibly very weak topology. A few examples of approximating drifts are discussed in detail. The parameters of the approximating drifts can vary and be fine-tuned to achieve the standard $1/2$-strong convergence rate with a logarithmic factor.

The Sinc-Nystr\"{o}m method is a high-order numerical method based on Sinc basis functions for discretizing evolutionary differential equations in time. But in this method we have to solve all the time steps in one-shot (i.e. all-at-once), which results in a large-scale nonsymmetric dense system that is expensive to handle. In this paper, we propose and analyze preconditioner for such dense system arising from both the parabolic and hyperbolic PDEs. The proposed preconditioner is a low-rank perturbation of the original matrix and has two advantages. First, we show that the eigenvalues of the preconditioned system are highly clustered with some uniform bounds which are independent of the mesh parameters. Second, the preconditioner can be used parallel for all the Sinc time points via a block diagonalization procedure. Such a parallel potential owes to the fact that the eigenvector matrix of the diagonalization is well conditioned. In particular, we show that the condition number of the eigenvector matrix only mildly grows as the number of Sinc time points increases, and thus the roundoff error arising from the diagonalization procedure is controllable. The effectiveness of our proposed PinT preconditioners is verified by the observed mesh-independent convergence rates of the preconditioned GMRES in reported numerical examples.

The asymptotic behaviour of Linear Spectral Statistics (LSS) of the smoothed periodogram estimator of the spectral coherency matrix of a complex Gaussian high-dimensional time series $(\y_n)_{n \in \mathbb{Z}}$ with independent components is studied under the asymptotic regime where the sample size $N$ converges towards $+\infty$ while the dimension $M$ of $\y$ and the smoothing span of the estimator grow to infinity at the same rate in such a way that $\frac{M}{N} \rightarrow 0$. It is established that, at each frequency, the estimated spectral coherency matrix is close from the sample covariance matrix of an independent identically $\mathcal{N}_{\mathbb{C}}(0,\I_M)$ distributed sequence, and that its empirical eigenvalue distribution converges towards the Marcenko-Pastur distribution. This allows to conclude that each LSS has a deterministic behaviour that can be evaluated explicitly. Using concentration inequalities, it is shown that the order of magnitude of the supremum over the frequencies of the deviation of each LSS from its deterministic approximation is of the order of $\frac{1}{M} + \frac{\sqrt{M}}{N}+ (\frac{M}{N})^{3}$ where $N$ is the sample size. Numerical simulations supports our results.

In Chen and Zhou 2021, they consider an inference problem for an Ornstein-Uhlenbeck process driven by a general one-dimensional centered Gaussian process $(G_t)_{t\ge 0}$. The second order mixed partial derivative of the covariance function $ R(t,\, s)=\mathbb{E}[G_t G_s]$ can be decomposed into two parts, one of which coincides with that of fractional Brownian motion and the other is bounded by $(ts)^{H-1}$ with $H\in (\frac12,\,1)$, up to a constant factor. In this paper, we investigate the same problem but with the assumption of $H\in (0,\,\frac12)$. The starting point of this paper is a new relationship between the inner product of $\mathfrak{H}$ and that of the Hilbert space $\mathfrak{H}_1$ associated with the fractional Brownian motion $(B^{H}_t)_{t\ge 0}$. Based on this relationship and some known estimation of the inner product of $\mathfrak{H}_1$, we prove the strong consistency with $H\in (0, \frac12)$, and the asymptotic normality and the Berry-Ess\'{e}en bounds with $H\in (0,\frac38)$ for both the least squares estimator and the moment estimator of the drift parameter constructed from the continuous observations.

Large linear systems of saddle-point type have arisen in a wide variety of applications throughout computational science and engineering. The discretizations of distributed control problems have a saddle-point structure. The numerical solution of saddle-point problems has attracted considerable interest in recent years. In this work, we propose a novel Braess-Sarazin multigrid relaxation scheme for finite element discretizations of the distributed control problems, where we use the stiffness matrix obtained from the five-point finite difference method for the Laplacian to approximate the inverse of the mass matrix arising in the saddle-point system. We apply local Fourier analysis to examine the smoothing properties of the Braess-Sarazin multigrid relaxation. From our analysis, the optimal smoothing factor for Braess-Sarazin relaxation is derived. Numerical experiments validate our theoretical results. The relaxation scheme considered here shows its high efficiency and robustness with respect to the regularization parameter and grid size.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司