We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unfied framework. We build on the Bayesian approximation error (BAE) framework, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.
We provide a general framework to exclude parameterized running times of the form $O(\ell^\beta+ n^\gamma)$ for problems that have polynomial running time lower bounds under hypotheses from fine-grained complexity. Our framework is based on cross-compositions from parameterized complexity. We (conditionally) exclude running times of the form $O(\ell^{{\gamma}/{(\gamma-1)} - \epsilon} + n^\gamma)$ for any $1<\gamma<2$ and $\epsilon>0$ for the following problems: - Longest Common Subsequence: Given two length-$n$ strings and $\ell\in\mathbb{N}$, is there a common subsequence of length $\ell$? - Discrete Fr\'echet Distance: Given two lists of $n$ points each and $k\in \mathbb{N}$, is the Fr\'echet distance of the lists at most $k$? Here $\ell$ is the maximum number of points which one list is ahead of the other list in an optimum traversal. Moreover, we exclude running times $O(\ell^{{2\gamma}/{(\gamma -1)}-\epsilon} + n^\gamma)$ for any $1<\gamma<3$ and $\epsilon>0$ for: - Negative Triangle: Given an edge-weighted graph with $n$ vertices, is there a triangle whose sum of edge-weights is negative? Here $\ell$ is the order of a maximum connected component. - Triangle Collection: Given a vertex-colored graph with $n$ vertices, is there for each triple of colors a triangle whose vertices have these three colors? Here $\ell$ is the order of a maximum connected component. - 2nd Shortest Path: Given an $n$-vertex edge-weighted directed graph, two vertices $s$ and $t$, and $k \in \mathbb{N}$, has the second longest $s$-$t$-path length at most $k$? Here $\ell$ is the directed feedback vertex set. Except for 2nd Shortest Path all these running time bounds are tight, that is, algorithms with running time $O(\ell^{{\gamma}/{(\gamma-1)}} + n^\gamma )$ for any $1 < \gamma < 2$ and $O(\ell^{{2\gamma}/{(\gamma -1)}} + n^\gamma)$ for any $1 < \gamma < 3$, respectively, are known.
When searching for exoplanets, one wants to count how many planets orbit a given star, and to determine what their orbital parameters are. If the estimated orbital elements are too far from those of a planet truly present, this should be considered as a false detection. This setting is a particular instance of a general one: aiming to retrieve which parametric patterns are in a dataset corrupted by nuisance signals, with a certain accuracy on their parameters. We search for a decision rule minimizing false and missed detections, either as a function of their relative cost, or when the expected number of false detections is bounded. We find that if the patterns can be separated in a technical sense, it is sufficient to select the parameter regions with highest posterior probability. We then discuss how the obtained posterior probabilities can be calibrated. We apply our procedure to the retrieval of periodic signals in unevenly sampled time series, emulating the search for exoplanets in radial velocity data. We show on a simulation that, for a given tolerance to false detections, the new criterion leads to 15 to 30\% more true detections than other criteria, including the Bayes factor.
The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
Much of the literature on optimal design of bandit algorithms is based on minimization of expected regret. It is well known that designs that are optimal over certain exponential families can achieve expected regret that grows logarithmically in the number of arm plays, at a rate governed by the Lai-Robbins lower bound. In this paper, we show that when one uses such optimized designs, the regret distribution of the associated algorithms necessarily has a very heavy tail, specifically, that of a truncated Cauchy distribution. Furthermore, for $p>1$, the $p$'th moment of the regret distribution grows much faster than poly-logarithmically, in particular as a power of the total number of arm plays. We show that optimized UCB bandit designs are also fragile in an additional sense, namely when the problem is even slightly mis-specified, the regret can grow much faster than the conventional theory suggests. Our arguments are based on standard change-of-measure ideas, and indicate that the most likely way that regret becomes larger than expected is when the optimal arm returns below-average rewards in the first few arm plays, thereby causing the algorithm to believe that the arm is sub-optimal. To alleviate the fragility issues exposed, we show that UCB algorithms can be modified so as to ensure a desired degree of robustness to mis-specification. In doing so, we also provide a sharp trade-off between the amount of UCB exploration and the tail exponent of the resulting regret distribution.
Accurate uncertainty quantification is a major challenge in deep learning, as neural networks can make overconfident errors and assign high confidence predictions to out-of-distribution (OOD) inputs. The most popular approaches to estimate predictive uncertainty in deep learning are methods that combine predictions from multiple neural networks, such as Bayesian neural networks (BNNs) and deep ensembles. However their practicality in real-time, industrial-scale applications are limited due to the high memory and computational cost. Furthermore, ensembles and BNNs do not necessarily fix all the issues with the underlying member networks. In this work, we study principled approaches to improve uncertainty property of a single network, based on a single, deterministic representation. By formalizing the uncertainty quantification as a minimax learning problem, we first identify distance awareness, i.e., the model's ability to quantify the distance of a testing example from the training data, as a necessary condition for a DNN to achieve high-quality (i.e., minimax optimal) uncertainty estimation. We then propose Spectral-normalized Neural Gaussian Process (SNGP), a simple method that improves the distance-awareness ability of modern DNNs with two simple changes: (1) applying spectral normalization to hidden weights to enforce bi-Lipschitz smoothness in representations and (2) replacing the last output layer with a Gaussian process layer. On a suite of vision and language understanding benchmarks, SNGP outperforms other single-model approaches in prediction, calibration and out-of-domain detection. Furthermore, SNGP provides complementary benefits to popular techniques such as deep ensembles and data augmentation, making it a simple and scalable building block for probabilistic deep learning. Code is open-sourced at //github.com/google/uncertainty-baselines
Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks. Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control. Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31--48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75--78% of all images). Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases. Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.
We study the problem of estimating latent population flows from aggregated count data. This problem arises when individual trajectories are not available due to privacy issues or measurement fidelity. Instead, the aggregated observations are measured over discrete-time points, for estimating the population flows among states. Most related studies tackle the problems by learning the transition parameters of a time-homogeneous Markov process. Nonetheless, most real-world population flows can be influenced by various uncertainties such as traffic jam and weather conditions. Thus, in many cases, a time-homogeneous Markov model is a poor approximation of the much more complex population flows. To circumvent this difficulty, we resort to a multi-marginal optimal transport (MOT) formulation that can naturally represent aggregated observations with constrained marginals, and encode time-dependent transition matrices by the cost functions. In particular, we propose to estimate the transition flows from aggregated data by learning the cost functions of the MOT framework, which enables us to capture time-varying dynamic patterns. The experiments demonstrate the improved accuracy of the proposed algorithms than the related methods in estimating several real-world transition flows.
Bayesian inference provides a systematic framework for integration of data with mathematical models to quantify the uncertainty in the solution of the inverse problem. However, the solution of Bayesian inverse problems governed by complex forward models described by partial differential equations (PDEs) remains prohibitive with black-box Markov chain Monte Carlo (MCMC) methods. We present hIPPYlib-MUQ, an extensible and scalable software framework that contains implementations of state-of-the art algorithms aimed to overcome the challenges of high-dimensional, PDE-constrained Bayesian inverse problems. These algorithms accelerate MCMC sampling by exploiting the geometry and intrinsic low-dimensionality of parameter space via derivative information and low rank approximation. The software integrates two complementary open-source software packages, hIPPYlib and MUQ. hIPPYlib solves PDE-constrained inverse problems using automatically-generated adjoint-based derivatives, but it lacks full Bayesian capabilities. MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients and Hessians to permit large-scale solution. By combining these two libraries, we created a robust, scalable, and efficient software framework that realizes the benefits of each and allows us to tackle complex large-scale Bayesian inverse problems. To illustrate the capabilities of hIPPYlib-MUQ, we present a comparison of a number of MCMC methods on several inverse problems. These include problems with linear and nonlinear PDEs, various noise models, and different parameter dimensions. The results demonstrate that large ($\sim 50\times$) speedups over conventional black box and gradient-based MCMC algorithms can be obtained by exploiting Hessian information (from the log posterior), underscoring the power of the integrated hIPPYlib-MUQ framework.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.