亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

ChatGPT and generative AI tools are becoming the new reality. This work is motivated by the premise that ``ChatGPT content may exhibit a distinctive behavior that can be separated from scientific articles''. In this study, we demonstrate how we tested this premise in two phases and prove its validity. Subsequently, we introduce xFakeSci, a novel learning algorithm, that is capable of distinguishing ChatGPT-generated articles from publications produced by scientists. The algorithm is trained using network models driven from multiple types of data sources, such as ChatGPT-generated documents achieved by means of prompt-engineering, and PubMed articles. To mitigate over-fitting issues, we incorporate a calibration step that is built upon data-driven heuristics, including ratios. We evaluate the algorithm across multiple datasets covering publication periods and diseases (cancer, depression, and Alzheimer's). Further, we show how the algorithm is benchmarked against the state-of-the-art (SOTA) algorithms. While the xFakeSci algorithm achieve F1 score ranging from 80% - 94%, SOTA algorithms score F1 values between 38% - 52%. We attribute the noticeable difference to the introduction of calibration and a proximity distance heuristic, which we underscore this promising performance. Indeed, the prediction of fake science generated by ChatGPT presents a considerable challenge. Nonetheless, the introduction of xFakeSci algorithm is a significant step on the way to combating fake science.

相關內容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美國OpenAI 研發的聊天機器人程序 [1] ,于2022年11月30日發布 。ChatGPT是人工智能技術驅動的自然語言處理工具,它能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼,寫論文任務。 [1] //openai.com/blog/chatgpt/

Multi-modal foundation models such as CLIP have showcased impressive zero-shot capabilities. However, their applicability in resource-constrained environments is limited due to their large number of parameters and high inference time. While existing approaches have scaled down the entire CLIP architecture, we focus on training smaller variants of the image encoder, which suffices for efficient zero-shot classification. The use of synthetic data has shown promise in distilling representations from larger teachers, resulting in strong few-shot and linear probe performance. However, we find that this approach surprisingly fails in true zero-shot settings when using contrastive losses. We identify the exploitation of spurious features as being responsible for poor generalization between synthetic and real data. However, by using the image feature-based L2 distillation loss, we mitigate these problems and train students that achieve zero-shot performance which on four domain-specific datasets is on-par with a ViT-B/32 teacher model trained on DataCompXL, while featuring up to 92% fewer parameters.

This paper presents a novel approach for minimizing the number of teleportations in Distributed Quantum Computing (DQC) using formal methods. Quantum teleportation plays a major role in communicating quantum information. As such, it is desirable to perform as few teleportations as possible when distributing a quantum algorithm on a network of quantum machines. Contrary to most existing methods which rely on graph-theoretic or heuristic search techniques, we propose a drastically different approach for minimizing the number of teleportations through utilizing formal methods. Specifically, the contributions of this paper include: the formal specification of the teleportation minimization problem in Alloy, the generalizability of the proposed Alloy specifications to quantum circuits with $n$-ary gates, the reusability of the Alloy specifications for different quantum circuits and networks, the simplicity of specifying and solving other problems such as load balancing and heterogeneity, and the compositionality of the proposed approach. We also develop a software tool, called qcAlloy, that takes as input the textual description of a quantum circuit, generates the corresponding Alloy model, and finally solves the minimization problem using the Alloy analyzer. We have experimentally evaluated qcAlloy for some of the circuits in the RevLib benchmark with more than 100 qubits and 1200 layers, and have demonstrated that qcAlloy outperforms one of the most efficient existing methods for most benchmark circuits in terms of minimizing the number of teleportations.

In recent years, the shortcomings of Bayes posteriors as inferential devices has received increased attention. A popular strategy for fixing them has been to instead target a Gibbs measure based on losses that connect a parameter of interest to observed data. While existing theory for such inference procedures relies on these losses to be analytically available, in many situations these losses must be stochastically estimated using pseudo-observations. The current paper fills this research gap, and derives the first asymptotic theory for Gibbs measures based on estimated losses. Our findings reveal that the number of pseudo-observations required to accurately approximate the exact Gibbs measure depends on the rates at which the bias and variance of the estimated loss converge to zero. These results are particularly consequential for the emerging field of generalised Bayesian inference, for estimated intractable likelihoods, and for biased pseudo-marginal approaches. We apply our results to three Gibbs measures that have been proposed to deal with intractable likelihoods and model misspecification.

The burgeoning interest in developing Large Language Models (LLMs) with up to trillion parameters has been met with concerns regarding resource efficiency and practical expense, particularly given the immense cost of experimentation. This scenario underscores the importance of exploring the potential of Small Language Models (SLMs) as a resource-efficient alternative. In this context, we introduce MiniCPM, specifically the 1.2B and 2.4B non-embedding parameter variants, not only excel in their respective categories but also demonstrate capabilities on par with 7B-13B LLMs. While focusing on SLMs, our approach exhibits scalability in both model and data dimensions for future LLM research. Regarding model scaling, we employ extensive model wind tunnel experiments for stable and optimal scaling. For data scaling, we introduce a Warmup-Stable-Decay (WSD) learning rate scheduler (LRS), conducive to continuous training and domain adaptation. We present an in-depth analysis of the intriguing training dynamics that occurred in the WSD LRS. With WSD LRS, we are now able to efficiently study data-model scaling law without extensive retraining experiments on both axes of model and data, from which we derive the much higher compute optimal data-model ratio than Chinchilla Optimal. Additionally, we introduce MiniCPM family, including MiniCPM-DPO, MiniCPM-MoE and MiniCPM-128K, whose excellent performance further cementing MiniCPM's foundation in diverse SLM applications. MiniCPM models are available publicly at //github.com/OpenBMB/MiniCPM .

This article examines the implicit regularization effect of Stochastic Gradient Descent (SGD). We consider the case of SGD without replacement, the variant typically used to optimize large-scale neural networks. We analyze this algorithm in a more realistic regime than typically considered in theoretical works on SGD, as, e.g., we allow the product of the learning rate and Hessian to be $O(1)$ and we do not specify any model architecture, learning task, or loss (objective) function. Our core theoretical result is that optimizing with SGD without replacement is locally equivalent to making an additional step on a novel regularizer. This implies that the expected trajectories of SGD without replacement can be decoupled in (i) following SGD with replacement (in which batches are sampled i.i.d.) along the directions of high curvature, and (ii) regularizing the trace of the noise covariance along the flat ones. As a consequence, SGD without replacement travels flat areas and may escape saddles significantly faster than SGD with replacement. On several vision tasks, the novel regularizer penalizes a weighted trace of the Fisher Matrix, thus encouraging sparsity in the spectrum of the Hessian of the loss in line with empirical observations from prior work. We also propose an explanation for why SGD does not train at the edge of stability (as opposed to GD).

Explainable Artificial Intelligence (XAI) systems aim to improve users' understanding of AI but rarely consider the inclusivity aspects of XAI. Without inclusive approaches, improving explanations might not work well for everyone. This study investigates leveraging users' diverse problem-solving styles as an inclusive strategy to fix an XAI prototype, with the ultimate goal of improving users' mental models of AI. We ran a between-subject study with 69 participants. Our results show that the inclusivity fixes increased participants' engagement with explanations and produced significantly improved mental models. Analyzing differences in mental model scores further highlighted specific inclusivity fixes that contributed to the significant improvement in the mental model.

The Neural Tangent Kernel (NTK) has emerged as a fundamental concept in the study of wide Neural Networks. In particular, it is known that the positivity of the NTK is directly related to the memorization capacity of sufficiently wide networks, i.e., to the possibility of reaching zero loss in training, via gradient descent. Here we will improve on previous works and obtain a sharp result concerning the positivity of the NTK of feedforward networks of any depth. More precisely, we will show that, for any non-polynomial activation function, the NTK is strictly positive definite. Our results are based on a novel characterization of polynomial functions which is of independent interest.

This paper introduces a new technique to measure the feature dependency of neural network models. The motivation is to better understand a model by querying whether it is using information from human-understandable features, e.g., anatomical shape, volume, or image texture. Our method is based on the principle that if a model is dependent on a feature, then removal of that feature should significantly harm its performance. A targeted feature is "removed" by collapsing the dimension in the data distribution that corresponds to that feature. We perform this by moving data points along the feature dimension to a baseline feature value while staying on the data manifold, as estimated by a deep generative model. Then we observe how the model's performance changes on the modified test data set, with the target feature dimension removed. We test our method on deep neural network models trained on synthetic image data with known ground truth, an Alzheimer's disease prediction task using MRI and hippocampus segmentations from the OASIS-3 dataset, and a cell nuclei classification task using the Lizard dataset.

Developing visualizations with comprehensive annotations is crucial for research and educational purposes. We've been experimenting with various visualization tools like Plotly, Plotly.js, and D3.js to analyze global trends, focusing on areas such as Global Terrorism, the Global Air Quality Index (AQI), and Global Population dynamics. These visualizations help us gain insights into complex research topics, facilitating better understanding and analysis. We've created a single web homepage that links to three distinct visualization web pages, each exploring specific topics in depth. These webpages have been deployed on free cloud hosting servers such as Vercel and Render.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司