亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mutation testing is an established software quality assurance technique for the assessment of test suites. While it is well-suited to estimate the general fault-revealing capability of a test suite, it is not practical and informative when the software under test must be validated against specific requirements. This is often the case for embedded software, where the software is typically validated against rigorously-specified safety properties. In such a scenario (i) a mutant is relevant only if it can impact the satisfaction of the tested properties, and (ii) a mutant is meaningfully-killed with respect to a property only if it causes the violation of that property. To address these limitations of mutation testing, we introduce property-based mutation testing, a method for assessing the capability of a test suite to exercise the software with respect to a given property. We evaluate our property-based mutation testing framework on Simulink models of safety-critical Cyber-Physical Systems (CPS) from the automotive and avionic domains and demonstrate how property-based mutation testing is more informative than regular mutation testing. These results open new perspectives in both mutation testing and test case generation of CPS.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 可約的 · 動力系統 · 泛函 · Performer ·
2023 年 3 月 22 日

An essential tool in data-driven modeling of dynamical systems from frequency response measurements is the barycentric form of the underlying rational transfer function. In this work, we propose structured barycentric forms for modeling dynamical systems with second-order time derivatives using their frequency domain input-output data. By imposing a set of interpolation conditions, the systems' transfer functions are rewritten in different barycentric forms using different parametrizations. Loewner-like algorithms are developed for the explicit computation of second-order systems from data based on the developed barycentric forms. Numerical experiments show the performance of these new structured data driven modeling methods compared to other interpolation-based data-driven modeling techniques from the literature.

We consider the problem of autonomous navigation using limited information from a remote sensor network. Because the remote sensors are power and bandwidth limited, we use event-triggered (ET) estimation to manage communication costs. We introduce a fast and efficient sampling-based planner which computes motion plans coupled with ET communication strategies that minimize communication costs, while satisfying constraints on the probability of reaching the goal region and the point-wise probability of collision. We derive a novel method for offline propagation of the expected state distribution, and corresponding bounds on this distribution. These bounds are used to evaluate the chance constraints in the algorithm. Case studies establish the validity of our approach, demonstrating fast computation of optimal plans.

In applications of group testing in networks, e.g. identifying individuals who are infected by a disease spread over a network, exploiting correlation among network nodes provides fundamental opportunities in reducing the number of tests needed. We model and analyze group testing on $n$ correlated nodes whose interactions are specified by a graph $G$. We model correlation through an edge-faulty random graph formed from $G$ in which each edge is dropped with probability $1-r$, and all nodes in the same component have the same state. We consider three classes of graphs: cycles and trees, $d$-regular graphs and stochastic block models or SBM, and obtain lower and upper bounds on the number of tests needed to identify the defective nodes. Our results are expressed in terms of the number of tests needed when the nodes are independent and they are in terms of $n$, $r$, and the target error. In particular, we quantify the fundamental improvements that exploiting correlation offers by the ratio between the total number of nodes $n$ and the equivalent number of independent nodes in a classic group testing algorithm. The lower bounds are derived by illustrating a strong dependence of the number of tests needed on the expected number of components. In this regard, we establish a new approximation for the distribution of component sizes in "$d$-regular trees" which may be of independent interest and leads to a lower bound on the expected number of components in $d$-regular graphs. The upper bounds are found by forming dense subgraphs in which nodes are more likely to be in the same state. When $G$ is a cycle or tree, we show an improvement by a factor of $log(1/r)$. For grid, a graph with almost $2n$ edges, the improvement is by a factor of ${(1-r) \log(1/r)}$, indicating drastic improvement compared to trees. When $G$ has a larger number of edges, as in SBM, the improvement can scale in $n$.

In this article, we propose a two-sample test for functional observations modeled as elements of a separable Hilbert space. We present a general recipe for constructing a measure of dissimilarity between the distributions of two Hilbertian random variables and study the theoretical properties of one such measure which is constructed using Maximum Mean Discrepancy (MMD) on random linear projections of the distributions and aggregating them. We propose a data-driven estimate of this measure and use it as the test statistic. Large sample distributions of this statistic are derived both under null and alternative hypotheses. This test statistic involves a kernel function and the associated bandwidth. We prove that the resulting test has large-sample consistency for any data-driven choice of bandwidth that converges in probability to a positive number. Since the theoretical quantiles of the limiting null distribution are intractable, in practice, the test is calibrated using the permutation method. We also derive the limiting distribution of the permuted test statistic and the asymptotic power of the permutation test under local contiguous alternatives. This shows that the permutation test is consistent and statistically efficient in the Pitman sense. Extensive simulation studies are carried out and a real data set is analyzed to compare the performance of our proposed test with some state-of-the-art methods.

It is a common phenomenon that for high-dimensional and nonparametric statistical models, rate-optimal estimators balance squared bias and variance. Although this balancing is widely observed, little is known whether methods exist that could avoid the trade-off between bias and variance. We propose a general strategy to obtain lower bounds on the variance of any estimator with bias smaller than a prespecified bound. This shows to which extent the bias-variance trade-off is unavoidable and allows to quantify the loss of performance for methods that do not obey it. The approach is based on a number of abstract lower bounds for the variance involving the change of expectation with respect to different probability measures as well as information measures such as the Kullback-Leibler or $\chi^2$-divergence. In a second part of the article, the abstract lower bounds are applied to several statistical models including the Gaussian white noise model, a boundary estimation problem, the Gaussian sequence model and the high-dimensional linear regression model. For these specific statistical applications, different types of bias-variance trade-offs occur that vary considerably in their strength. For the trade-off between integrated squared bias and integrated variance in the Gaussian white noise model, we propose to combine the general strategy for lower bounds with a reduction technique. This allows us to reduce the original problem to a lower bound on the bias-variance trade-off for estimators with additional symmetry properties in a simpler statistical model. In the Gaussian sequence model, different phase transitions of the bias-variance trade-off occur. Although there is a non-trivial interplay between bias and variance, the rate of the squared bias and the variance do not have to be balanced in order to achieve the minimax estimation rate.

In survival contexts, substantial literature exists on estimating optimal treatment regimes, where treatments are assigned based on personal characteristics for the purpose of maximizing the survival probability. These methods assume that a set of covariates is sufficient to deconfound the treatment-outcome relationship. Nevertheless, the assumption can be limiting in observational studies or randomized trials in which noncompliance occurs. Thus, we advance a novel approach for estimating the optimal treatment regime when certain confounders are not observable and a binary instrumental variable is available. Specifically, via a binary instrumental variable, we propose two semiparametric estimators for the optimal treatment regime, one of which possesses the desirable property of double robustness, by maximizing Kaplan-Meier-like estimators within a pre-defined class of regimes. Because the Kaplan-Meier-like estimators are jagged, we incorporate kernel smoothing methods to enhance their performance. Under appropriate regularity conditions, the asymptotic properties are rigorously established. Furthermore, the finite sample performance is assessed through simulation studies. We exemplify our method using data from the National Cancer Institute's (NCI) prostate, lung, colorectal, and ovarian cancer screening trial.

Learning precise surrogate models of complex computer simulations and physical machines often require long-lasting or expensive experiments. Furthermore, the modeled physical dependencies exhibit nonlinear and nonstationary behavior. Machine learning methods that are used to produce the surrogate model should therefore address these problems by providing a scheme to keep the number of queries small, e.g. by using active learning and be able to capture the nonlinear and nonstationary properties of the system. One way of modeling the nonstationarity is to induce input-partitioning, a principle that has proven to be advantageous in active learning for Gaussian processes. However, these methods either assume a known partitioning, need to introduce complex sampling schemes or rely on very simple geometries. In this work, we present a simple, yet powerful kernel family that incorporates a partitioning that: i) is learnable via gradient-based methods, ii) uses a geometry that is more flexible than previous ones, while still being applicable in the low data regime. Thus, it provides a good prior for active learning procedures. We empirically demonstrate excellent performance on various active learning tasks.

In the 1950s Horace Barlow and Fred Attneave suggested a connection between sensory systems and how they are adapted to the environment: early vision evolved to maximise the information it conveys about incoming signals. Following Shannon's definition, this information was described using the probability of the images taken from natural scenes. Previously, direct accurate predictions of image probabilities were not possible due to computational limitations. Despite the exploration of this idea being indirect, mainly based on oversimplified models of the image density or on system design methods, these methods had success in reproducing a wide range of physiological and psychophysical phenomena. In this paper, we directly evaluate the probability of natural images and analyse how it may determine perceptual sensitivity. We employ image quality metrics that correlate well with human opinion as a surrogate of human vision, and an advanced generative model to directly estimate the probability. Specifically, we analyse how the sensitivity of full-reference image quality metrics can be predicted from quantities derived directly from the probability distribution of natural images. First, we compute the mutual information between a wide range of probability surrogates and the sensitivity of the metrics and find that the most influential factor is the probability of the noisy image. Then we explore how these probability surrogates can be combined using a simple model to predict the metric sensitivity, giving an upper bound for the correlation of 0.85 between the model predictions and the actual perceptual sensitivity. Finally, we explore how to combine the probability surrogates using simple expressions, and obtain two functional forms (using one or two surrogates) that can be used to predict the sensitivity of the human visual system given a particular pair of images.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.

北京阿比特科技有限公司